In silico investigation of cholesterol-lowering drugs to find potential inhibitors of dehydrosqualene synthase in Staphylococcus aureus
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38261920
PubMed Central
PMC10794677
DOI
10.1007/s13205-023-03862-y
PII: 3862
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-virulence, CrtM, Docking, MM-GBSA, Molecular dynamics, Staphyloxanthin virtual screening,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Staphylococcus aureus is a lethal pathogen that can cause various bacterial infections. This study targets the CrtM enzyme of S. aureus, which is crucial for synthesizing golden carotenoid pigment: staphyloxanthin, which provides anti-oxidant activity to this bacterium for combating antimicrobial resistance inside the host cell. The present investigation quests for human SQS inhibitors against the CrtM enzyme by employing structure-based drug design approaches including induced fit docking (IFD), molecular dynamic (MD) simulations, and binding free energy calculations. Depending upon the docking scores, two compounds, lapaquistat acetate and squalestatin analog 20, were identified as the lead molecules exhibit higher affinity toward the CrtM enzyme. These docked complexes were further subjected to 100 ns MD simulation and several thermodynamics parameters were analyzed. Further, the binding free energies (ΔG) were calculated for each simulated protein-ligand complex to study the stability of molecular contacts using the MM-GBSA approach. Pre-ADMET analysis was conducted for systematic evaluation of physicochemical and medicinal chemistry properties of these compounds. The above study suggested that lapaquistat acetate and squalestatin analog 20 can be selected as potential lead candidates with promising binding affinity for the S. aureus CrtM enzyme. This study might provide insights into the discovery of potential drug candidates for S. aureus with a high therapeutic index. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03862-y.
Zobrazit více v PubMed
Ahmad B, Saeed A, Castrosanto MA, et al. Identification of natural marine compounds as potential inhibitors of CDK2 using molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn. 2022 doi: 10.1080/07391102.2022.2135594. PubMed DOI
Aribisala JO, Sabiu S. Cheminformatics identification of phenolics as modulators of penicillin-binding protein 2a of Staphylococcus aureus: a structure–activity-relationship-based study. Pharmaceutics. 2022;14:1818. doi: 10.3390/pharmaceutics14091818. PubMed DOI PMC
Banu S, Bollu R, Naseema M, et al. A novel templates of piperazinyl-1,2-dihydroquinoline-3-carboxylates: synthesis, anti-microbial evaluation and molecular docking studies. Bioorg Med Chem Lett. 2018;28:1166–1170. doi: 10.1016/j.bmcl.2018.03.007. PubMed DOI
Berman HM. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Che Omar MT. Data analysis of molecular dynamics simulation trajectories of β-sitosterol, sonidegib and cholesterol in smoothened protein with the CHARMM36 force field. Data Brief. 2020;33:106350. doi: 10.1016/j.dib.2020.106350. PubMed DOI PMC
Choudhary MI, Shaikh M, Tul-Wahab A, Ur-Rahman A. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLOS ONE. 2020;15:e0235030. doi: 10.1371/journal.pone.0235030. PubMed DOI PMC
Dalal V, Dhankhar P, Singh V, et al. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021;40:148–165. doi: 10.1007/s10930-020-09953-6. PubMed DOI
Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021
Elmesseri RA, Saleh SE, Elsherif HM, et al. Staphyloxanthin as a potential novel target for deciphering promising anti-Staphylococcus aureus agents. Antibiot Basel Switz. 2022;11:298. doi: 10.3390/antibiotics11030298. PubMed DOI PMC
Gao P, Davies J, Kao RYT. Dehydrosqualene desaturase as a novel target for anti-virulence therapy against Staphylococcus aureus. mBio. 2017;8:e01224–17. doi: 10.1128/mBio.01224-17. PubMed DOI PMC
Gupta A, Chaudhary N, Aparoy P. MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. Int J Biol Macromol. 2018;119:352–359. doi: 10.1016/j.ijbiomac.2018.07.050. PubMed DOI
Husain A, Ahmad A, Khan SA, et al. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm J. 2016;24:104–114. doi: 10.1016/j.jsps.2015.02.008. PubMed DOI PMC
Kahlon AK, Roy S, Sharma A. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus Aureus. J Biomol Struct Dyn. 2010;28:201–210. doi: 10.1080/07391102.2010.10507353. PubMed DOI
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951. PubMed DOI PMC
Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J Mol Struct. 2022;1255:132476. doi: 10.1016/j.molstruc.2022.132476. DOI
Lee SK, Lee IH, Kim HJ, et al. The PreADME approach: web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties, EuroQSAR 2002 designing drugs and crop protectants: processes, problems and solutions. Massachusetts: Blackwell Publishing; 2003. pp. 418–420.
Liu C-I, Liu GY, Song Y, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science. 2008;319:1391–1394. doi: 10.1126/science.1153018. PubMed DOI PMC
Marques SM, Bednar D, Damborsky J. Computational study of protein-ligand unbinding for enzyme engineering. Front Chem. 2019;6:650. doi: 10.3389/fchem.2018.00650. PubMed DOI PMC
Metwaly AM, Elwan A, El-Attar A-AMM, et al. Structure-based virtual screening, docking, ADMET, molecular dynamics, and MM-PBSA calculations for the discovery of potential natural SARS-CoV-2 helicase inhibitors from the Traditional Chinese Medicine. J Chem. 2022;2022:1–23. doi: 10.1155/2022/7270094. DOI
Musil M, Jezik A, Jankujova M, et al. Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web. Comput Struct Biotechnol J. 2022;20:6512–6518. doi: 10.1016/j.csbj.2022.11.031. PubMed DOI PMC
Nayak C, Singh SK. In silico identification of natural product inhibitors against Octamer-binding transcription factor 4 (Oct4) to impede the mechanism of glioma stem cells. PLoS ONE. 2021;16:e0255803. doi: 10.1371/journal.pone.0255803. PubMed DOI PMC
Pinto GP, Hendrikse NM, Stourac J, et al. Virtual screening of potential anticancer drugs based on microbial products. Semin Cancer Biol. 2022;86:1207–1217. doi: 10.1016/j.semcancer.2021.07.012. PubMed DOI
Schrödinger Release 2022–4: LigPrep, Schrödinger, LLC, New York, NY, 2022. https://www.schrodinger.com/
Schrödinger Release 2022–4: Maestro, Schrödinger, LLC, New York, NY, 2022. https://www.schrodinger.com/
Schrödinger Release 2022–4: Prime, Schrödinger, LLC, New York, NY, 2022. https://www.schrodinger.com/
Singh G, Soni H, Tandon S, et al. Identification of natural DHFR inhibitors in MRSA strains: structure-based drug design study. Results Chem. 2022;4:100292. doi: 10.1016/j.rechem.2022.100292. DOI
Stourac J, Vavra O, Kokkonen P, et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019;47:W414–W422. doi: 10.1093/nar/gkz378. PubMed DOI PMC
Sullivan LE, Rice KC. Measurement of Staphylococcus aureus pigmentation by methanol extraction. Methods Mol Biol Clifton NJ. 2021;2341:1–7. doi: 10.1007/978-1-0716-1550-8_1. PubMed DOI
Thapa B, Raghavachari K. Energy decomposition analysis of protein-ligand interactions using molecules-in-molecules fragmentation-based method. J Chem Inf Model. 2019;59:3474–3484. doi: 10.1021/acs.jcim.9b00432. PubMed DOI
Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49:W5–W14. doi: 10.1093/nar/gkab255. PubMed DOI PMC