Long-Term LDL-Apheresis Treatment and Dynamics of Circulating miRNAs in Patients with Severe Familial Hypercholesterolemia

. 2023 Aug 01 ; 14 (8) : . [epub] 20230801

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37628623

Lipoprotein apheresis (LA) is a therapeutic option for patients with severe hypercholesterolemia who have persistently elevated LDL-C levels despite attempts at drug therapy. MicroRNAs (miRNAs), important posttranscriptional gene regulators, are involved in the pathogenesis of atherosclerosis. Our study aimed to monitor the dynamics of twenty preselected circulating miRNAs in patients under long-term apheresis treatment. Plasma samples from 12 FH patients (men = 50%, age = 55.3 ± 12.2 years; mean LA overall treatment time = 13.1 ± 7.8 years) were collected before each apheresis therapy every sixth month over the course of four years of treatment. Eight complete follow-up (FU) samples were measured in each patient. Dynamic changes in the relative quantity of 6 miRNAs (miR-92a, miR-21, miR-126, miR-122, miR-26a, and miR-185; all p < 0.04) during FU were identified. Overall apheresis treatment time influenced circulating miR-146a levels (p < 0.04). In LDLR mutation homozygotes (N = 5), compared to heterozygotes (N = 7), we found higher plasma levels of miR-181, miR-126, miR-155, and miR-92a (all p < 0.03). Treatment with PCSK9 inhibitors (N = 6) affected the plasma levels of 7 miRNAs (miR-126, miR-122, miR-26a, miR-155, miR-125a, miR-92a, and miR-27a; all p < 0.04). Long-term monitoring has shown that LA in patients with severe familial hypercholesterolemia influences plasma circulating miRNAs involved in endothelial dysfunction, cholesterol homeostasis, inflammation, and plaque development. The longer the treatment using LA, the better the miRNA milieu depicting the potential cardiovascular risk.

Zobrazit více v PubMed

Rader D.J., Kathiresan S. Disorders of lipoprotein metabolism. In: Jameson J.L., Kasper D.L., Longo D.L., Fauci A.S., Hauser S.L., Loscalzo J., editors. Harrison’s Principles of Internal Medicine. 20th ed. McGraw Hill Ed.; New York, NY, USA: 2018. pp. 2889–2902.

Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., Defesche J.C., et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013;34:3478–3490. doi: 10.1093/eurheartj/eht273. PubMed DOI PMC

Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020;11:574474. doi: 10.3389/fgene.2020.574474. PubMed DOI PMC

Bambauer R., Bambauer C., Lehmann B., Latza R., Schiel R. LDL-apheresis: Technical and clinical aspects. Sci. World J. 2012;2012:314283. doi: 10.1100/2012/314283. PubMed DOI PMC

Blaha V., Blaha M., Lanska M., Solichova D., Kujovska Krcmová L., Havel E., Vyroubal P., Zadak Z., Žák P., Sobotka L. Lipoprotein apheresis in the treatment of dyslipidaemia—The Czech Republic experience. Physiol. Res. 2017;66:S91–S100. doi: 10.33549/physiolres.933584. PubMed DOI

Stefanutti C., Zenti M.G. Lipoprotein Apheresis and PCSK9-Inhibitors. Impact on Atherogenic Lipoproteins and Anti-Inflammatory Mediators in Familial Hypercholesterolaemia. Curr. Pharm. Des. 2018;24:3634–3637. doi: 10.2174/1381612824666181025115658. PubMed DOI

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Dlouha D., Hubacek J.A. Regulatory RNAs and cardiovascular disease—With a special focus on circulating microRNAs. Physiol. Res. 2017;66((Suppl. 1)):S21–S38. doi: 10.33549/physiolres.933588. PubMed DOI

Fichtlscherer S., Zeiher A.M., Dimmeler S. Circulating microRNAs: Biomarkers or mediators of cardiovascular diseases? Arterioscler. Thromb. Vasc. Biol. 2011;11:2383–2390. doi: 10.1161/ATVBAHA.111.226696. PubMed DOI

Chang Y.J., Li Y.S., Wu C.C., Wang K.C., Huang T.C., Chen Z., Chien S. Extracellular MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication. Arterioscler. Thromb. Vasc. Biol. 2019;12:2492–2504. doi: 10.1161/ATVBAHA.119.312707. PubMed DOI PMC

Wiese C.B., Zhong J., Xu Z.Q., Zhang Y., Ramirez Solano M.A., Zhu W., Linton M.F., Sheng Q., Kon V., Vickers K.C. Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis. Atherosclerosis. 2019;282:121–131. doi: 10.1016/j.atherosclerosis.2019.01.023. PubMed DOI PMC

Dlouha D., Blaha M., Blaha V., Fatorova I., Hubacek J.A., Stavek P., Lanska V., Parikova A., Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017;30:128–134. doi: 10.1016/j.atherosclerosissup.2017.05.037. PubMed DOI

Visek J., Blaha M., Blaha V., Lasicova M., Lanska M., Andrýs C., Tebbens J.D., e Sá I.C.I., Tripská K., Vicen M., et al. Monitoring of up to 15 years effects of lipoprotein apheresis on lipids, biomarkers of inflammation, and soluble endoglin in familial hypercholesterolemia patients. Orphanet J. Rare Dis. 2021;16:110. doi: 10.1186/s13023-021-01749-w. PubMed DOI PMC

Dlouha D., Blaha M., Rohlova E., Hubacek J.A., Lanska V., Visek J., Blaha V. Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia. Genes. 2021;12:1599. doi: 10.3390/genes12101599. PubMed DOI PMC

Blaha V., Blaha M., Solichová D., Krčmová L.K., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017;30:159–165. doi: 10.1016/j.atherosclerosissup.2017.05.002. PubMed DOI

Borberg H., Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006;34:41–49. doi: 10.1016/j.transci.2005.09.001. PubMed DOI

Solichova D., Melichar B., Blaha V., Klejna M., Vavrova J., Palicka V., Zadak Z. Biochemical profile and survival in nonagenarians. Clin. Biochem. 2001;34:563–569. doi: 10.1016/S0009-9120(01)00261-2. PubMed DOI

Dlouha D., Ivak P., Netuka I., Novakova S., Konarik M., Tucanova Z., Lanska V., Hlavacek D., Wohlfahrt P., Hubacek J.A., et al. The effect of long-term left ventricular assist device support on flow-sensitive plasma microRNA levels. Int. J. Cardiol. 2021;339:138–143. doi: 10.1016/j.ijcard.2021.06.050. PubMed DOI

Bonauer A., Carmona G., Iwasaki M., Mione M., Koyanagi M., Fischer A., Burchfield J., Fox H., Doebele C., Ohtani K., et al. MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science. 2009;324:1710–1713. doi: 10.1126/science.1174381. PubMed DOI

Zhang L., Zhou M., Wang Y., Huang W., Qin G., Weintraub N.L., Tang Y. miR-92a inhibits vascular smooth muscle cell apoptosis: Role of the MKK4-JNK pathway. Apoptosis. 2014;19:975–983. doi: 10.1007/s10495-014-0987-y. PubMed DOI PMC

Daniel J.M., Penzkofer D., Teske R., Dutzmann J., Koch A., Bielenberg W., Bonauer A., Boon R.A., Fischer A., Bauersachs J., et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 2014;103:564–572. doi: 10.1093/cvr/cvu162. PubMed DOI PMC

Shang F., Wang S.C., Hsu C.Y., Miao Y., Martin M., Yin Y., Wu C.-C., Wang Y.-T., Wu G., Chien S., et al. MicroRNA-92a Mediates Endothelial Dysfunction in CKD. J. Am. Soc. Nephrol. 2017;28:3251–3261. doi: 10.1681/ASN.2016111215. PubMed DOI PMC

Ren J., Zhang J., Xu N., Han G., Geng Q., Song J., Li S., Zhao J., Chen H. Signature of Circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE. 2013;8:e80738. doi: 10.1371/journal.pone.0080738. PubMed DOI PMC

Jankauskas S.S., Gambardella J., Sardu C., Lombardi A., Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA. 2021;7:39. doi: 10.3390/ncrna7030039. PubMed DOI PMC

Weber M., Kim S., Patterson N., Rooney K., Searles C.D. MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2014;306:H1192–H1203. doi: 10.1152/ajpheart.00521.2013. PubMed DOI PMC

Virtue A., Johnson C., Lopez-Pastraña J., Shao Y., Fu H., Li X., Li Y.-F., Yin Y., Mai J., Rizzo V., et al. MicroRNA-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and non-alcoholic fatty liver disease a novel mouse model of obesity paradox. J. Biol. Chem. 2017;292:1267–1287. doi: 10.1074/jbc.M116.739839. PubMed DOI PMC

Krishnan R., Nair A.S., Dhar P.K. Computational study of ‘HUB’ microRNA in human cardiac diseases. Bioinformation. 2017;13:17–20. doi: 10.6026/97320630013017. PubMed DOI PMC

Li X., Kong D., Chen H., Liu S., Hu H., Wu T., Wang J., Chen W., Ning Y., Li Y., et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci. Rep. 2016;6:21789. doi: 10.1038/srep21789. PubMed DOI PMC

Jennewein C., von Knethen A., Schmid T., Brüne B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARgamma) mRNA destabilization. J. Biol. Chem. 2010;285:11846–11853. doi: 10.1074/jbc.M109.066399. PubMed DOI PMC

Li T., Cao H., Zhuang J., Wan J., Guan M., Yu B., Li X., Zhang W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chimica Acta. 2011;412:66–70. doi: 10.1016/j.cca.2010.09.029. PubMed DOI

Alvarez M.L., Khosroheidari M., Eddy E., Done S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis. 2015;242:595–604. doi: 10.1016/j.atherosclerosis.2015.08.023. PubMed DOI PMC

Rafiei A., Ferns G.A., Ahmadi R., Khaledifar A., Rahimzadeh-Fallah T., Mohmmad-Rezaei M., Emami S., Bagheri N. Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life. 2021;73:223–237. doi: 10.1002/iub.2421. PubMed DOI

Chen G., Li X. The decreased SIRT1 level may account for the lipid profile in chronic kidney disease. J. Biol. Res. 2019;26:9. doi: 10.1186/s40709-019-0101-2. PubMed DOI PMC

Xu Y., Miao C., Cui J., Bian X. miR-92a-3p promotes ox-LDL induced-apoptosis in HUVECs via targeting SIRT6 and activating MAPK signaling pathway. Braz. J. Med. Biol. Res. 2021;54:e9386. doi: 10.1590/1414-431x20209386. PubMed DOI PMC

Yang M., Liu W., Pellicane C., Sahyoun C., Joseph B.K., Gallo-Ebert C., Donigan M., Pandya D., Giordano C., Bata A., et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 2014;55:226–238. doi: 10.1194/jlr.M041335. PubMed DOI PMC

Jiang H., Zhang J., Du Y., Jia X., Yang F., Si S., Wang L., Hong B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis. 2015;243:523–532. doi: 10.1016/j.atherosclerosis.2015.10.026. PubMed DOI

Yue S., Li J., Lee S.Y., Lee H.J., Shao T., Song B., Cheng L., Masterson T.A., Liu X., Ratliff T.L., et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393–406. doi: 10.1016/j.cmet.2014.01.019. PubMed DOI PMC

Jiang Q., Li Y., Wu Q., Huang L., Xu J., Zeng Q. Pathogenic role of microRNAs in atherosclerotic ischemic stroke: Implications for diagnosis and therapy. Genes Dis. 2022;9:682–696. doi: 10.1016/j.gendis.2021.01.001. PubMed DOI PMC

Su Y., Yuan J., Zhang F., Lei Q., Zhang T., Li K., Guo J., Hong Y., Bu G., Lv X., et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 2019;10:365. doi: 10.1038/s41419-019-1599-9. PubMed DOI PMC

Zhang M., Wu J.F., Chen W.J., Tang S.L., Mo Z.C., Tang Y.-Y., Li Y., Wang J.-L., Liu X.-Y., Peng J., et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234:54–64. doi: 10.1016/j.atherosclerosis.2014.02.008. PubMed DOI

Wang L., Zhang N., Wang Z., Ai D.M., Cao Z.Y., Pan H.-P. Decreased MiR-155 Level in the Peripheral Blood of Non-Alcoholic Fatty Liver Disease Patients May Serve as a Biomarker and may Influence LXR Activity. Cell Physiol. Biochem. 2016;39:2239–2248. doi: 10.1159/000447917. PubMed DOI

Asgeirsdottir S.A., Van Solingen C., Murniati N.F., Zwiers P.J., Heeringa P., Van Meurs M., Satchell S.C., Saleem M.A., Mathieson P.W., Banas B., et al. Microrna-126 Contributes To Renal Macrovascular Heterogeneity Of Vcam-1 Protein Expression In Acute Inflammation. Am. J. Physiol. Renal. Physiol. 2012;302:F1630–F1639. doi: 10.1152/ajprenal.00400.2011. PubMed DOI

Chen T., Huang Z., Wang L., Wang Y., Wu F., Meng S., Wang C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res. 2009;83:131–139. doi: 10.1093/cvr/cvp121. PubMed DOI

Dávalos A., Goedeke L., Smibert P., Ramírez C.M., Warrier N.P., Andreo U., Cirera-Salinas D., Rayner K., Suresh U., Pastor-Pareja J.C., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA. 2011;108:9232–9237. doi: 10.1073/pnas.1102281108. PubMed DOI PMC

Esau C., Davis S., Murray S.F., Yu X.X., Pandey S.K., Pear M., Watts L., Booten S.L., Graham M., McKay R., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98. doi: 10.1016/j.cmet.2006.01.005. PubMed DOI

Fang Y., Davies P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 2012;32:979–987. doi: 10.1161/ATVBAHA.111.244053. PubMed DOI PMC

Feinberg M.W., Moore K.J. Microrna Regulation Of Atherosclerosis. Circ. Res. 2016;118:703–720. doi: 10.1161/CIRCRESAHA.115.306300. PubMed DOI PMC

Guo M., Mao X., Ji Q., Lang M., Li S., Peng Y., Zhou W., Xiong B., Zeng Q. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol. Cell Biol. 2010;88:555–564. doi: 10.1038/icb.2010.16. PubMed DOI

Huang R.S., Hu G.Q., Lin B., Lin Z.Y., Sun C.C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Investig. Med. 2010;58:961–967. doi: 10.2310/JIM.0b013e3181ff46d7. PubMed DOI

Iliopoulos D., Drosatos K., Hiyama Y., Goldberg I.J., Zannis V.I. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J. Lipid Res. 2010;51:1513–1523. doi: 10.1194/jlr.M004812. PubMed DOI PMC

Ito T., Yagi S., Yamakuchi M. Microrna-34a Regulation Of Endothelial Senescence. Biochem. Biophys. Res. Commun. 2010;398:735–740. doi: 10.1016/j.bbrc.2010.07.012. PubMed DOI

Leeper N.J., Raiesdana A., Kojima Y., Chun H.J., Azuma J., Maegdefessel L., Kundu R.K., Quertermous T., Tsao P.S., Spin J.M. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J. Cell Physiol. 2011;226:1035–1043. doi: 10.1002/jcp.22422. PubMed DOI PMC

Lin Y., Liu X., Cheng Y., Yang J., Huo Y., Zhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J. Biol. Chem. 2009;284:7903–7913. doi: 10.1074/jbc.M806920200. PubMed DOI PMC

Lovren F., Pan Y., Quan A., Singh K.K., Shukla P.C., Gupta N., Steer B.M., Ingram A.J., Gupta M., Al-Omran M. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81–S90. doi: 10.1161/CIRCULATIONAHA.111.084186. PubMed DOI

Qin B., Xiao B., Liang D., Xia J., Li Y., Yang H. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression. Biochem. Biophys. Res. Commun. 2011;410:127–133. doi: 10.1016/j.bbrc.2011.05.118. PubMed DOI

Ramirez C.M., Dávalos A., Goedeke L., Salerno A.G., Warrier N., Cirera-Salinas D., Suárez Y., Fernández-Hernando C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 2011;31:2707–2714. doi: 10.1161/ATVBAHA.111.232066. PubMed DOI PMC

Ramirez C.M., Rotllan N., Vlassov A.V., Davalos A., Li M., Goedeke L., Aranda J.F., Cirera-Salinas D., Araldi E., Salerno A., et al. Control of cholesterol metabolism and plasma high density lipoprotein levels by microRNA-144. Circ. Res. 2013;112:1592–1601. doi: 10.1161/CIRCRESAHA.112.300626. PubMed DOI PMC

Rayner K.J., Esau C.C., Hussain F.N., McDaniel A.L., Marshall S.M., van Gils J.M., Ray T.D., Sheedy F.J., Goedeke L., Liu X., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404–407. doi: 10.1038/nature10486. PubMed DOI PMC

Rayner K.J., Sheedy F.J., Esau C.C., Hussain F.N., Temel R.E., Parathath S., Van Gils J.M., Rayner A.J., Chang A.N., Suarez Y., et al. Antagonism Of Mir-33 In Mice Promotes Reverse Cholesterol Transport And Regression Of Atherosclerosis. J. Clin. Investig. 2011;121:2921–2931. doi: 10.1172/JCI57275. PubMed DOI PMC

Shirasaki T., Honda M., Shimakami T., Horii R., Yamashita T., Sakai Y., Sakai A., Okada H., Watanabe R., Murakami S., et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J. Virol. 2013;87:5270–5286. doi: 10.1128/JVI.03022-12. PubMed DOI PMC

Suarez Y., Fernández-Hernando C., Yu J., Gerber S.A., Harrison K.D., Pober J.S., Iruela-Arispe M.L., Merkenschlager M., Sessa W.C. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:14082–14087. doi: 10.1073/pnas.0804597105. PubMed DOI PMC

Suárez Y., Wang C., Manes T.D., Pober J.S. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: Feedback control of inflammation. J. Immunol. 2010;184:21–25. doi: 10.4049/jimmunol.0902369. PubMed DOI PMC

Sun D., Zhang J., Xie J., Wei W., Chen M., Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586:1472–1479. doi: 10.1016/j.febslet.2012.03.068. PubMed DOI

Sun H.X., Zeng D.X., Li R.T., Pang R.P., Yang H., Hu Y.L., Zhang Q., Jiang Y., Huang L.Y., Tang Y.B., et al. Essential role of microRNA-155 in regulating endothelium dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60:1407–1414. doi: 10.1161/HYPERTENSIONAHA.112.197301. PubMed DOI

Ulrich V., Rotllan N., Araldi E., Luciano A., Skroblin P., Abonnenc M., Perrotta P., Yin X., Bauer A., Leslie K.L., et al. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Mol. Med. 2016;8:643–653. doi: 10.15252/emmm.201506031. PubMed DOI PMC

Urbich C., Kaluza D., Frömel T., Knau A., Bennewitz K., Boon R.A., Bonauer A., Doebele C., Boeckel J.N., Hergenreider E., et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607–1616. doi: 10.1182/blood-2011-08-373886. PubMed DOI

Wang L., Jia X.J., Jiang H.J., Du Y., Yang F., Si S.Y., Hong B. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell Biol. 2013;33:1956–1964. doi: 10.1128/MCB.01580-12. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...