Genetics of Familial Hypercholesterolemia: New Insights
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33133164
PubMed Central
PMC7575810
DOI
10.3389/fgene.2020.574474
Knihovny.cz E-zdroje
- Klíčová slova
- epidemiology, familial hypercholesterolemia, gene score, polygenic FH, variants,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Familial hypercholesterolemia (FH) is one of the most common monogenic diseases, leading to an increased risk of premature atherosclerosis and its cardiovascular complications due to its effect on plasma cholesterol levels. Variants of three genes (LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the FH phenotype is associated with variants of other genes. Alternatively, the typical clinical picture of FH can result from the accumulation of common cholesterol-increasing alleles (polygenic FH). Although the Czech Republic is one of the most successful countries with respect to FH detection, approximately 80% of FH patients remain undiagnosed. The opportunities for international collaboration and experience sharing within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the detection of FH patients in the future and enable even more accessible and accurate genetic diagnostics.
3rd Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Czechia
Centre of Molecular Biology and Gene Therapy University Hospital Brno Czechia
Experimental Medicine Centre Institute for Clinical and Experimental Medicine Prague Czechia
Zobrazit více v PubMed
Abifadel M., Varret M., Rabès J. P., Allard D., Ouguerram K., Devillers M., et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34 154–156. 10.1038/ng1161 PubMed DOI
Ahmad A., Iqbal M. A. (2012). Significance of genome-wide analysis of copy number alterations and UPD in myelodysplastic syndromes using combined CGH - SNP arrays. Curr. Med. Chem. 19 3739–3747. 10.2174/092986712801661121 PubMed DOI
Al-Allaf F. A., Athar M., Abduljaleel Z., Taher M. M., Khan W., Ba-Hammam F. A., et al. (2015). Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease. Gene 565 76–84. 10.1016/j.gene.2015.03.064 PubMed DOI
Alhababi D., Zayed H. (2018). Spectrum of mutations of familial hypercholesterolemia in the 22 Arab countries. Atherosclerosis 279 62–72. 10.1016/j.atherosclerosis.2018.10.022 PubMed DOI
Anderson R. A., Byrum R. S., Coates P. M., Sando G. N. (1994). Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc. Natl. Acad. Sci. U.S.A. 91 2718–2722. 10.1073/pnas.91.7.2718 PubMed DOI PMC
Arca M., Zuliani G., Wilund K., Campagna F., Fellin R., Bertolini S., et al. (2002). Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 359 841–847. 10.1016/S0140-6736(02)07955-2 PubMed DOI
Aslanidis C., Ries S., Fehringer P., Büchler C., Klima H., Schmitz G. (1996). Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Genomics 33 85–93. 10.1006/geno.1996.0162 PubMed DOI
Bambauer R., Bambauer C., Lehmann B., Latza R., Schiel R. (2012). LDL-apheresis: technical and clinical aspects. Sci. World J. 2012:314283. PubMed PMC
Bañares V. G., Corral P., Medeiros A. M., Araujo M. B., Lozada A., Bustamante J., et al. (2017). Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina. J. Clin. Lipidol. 11 524–531. 10.1016/j.jacl.2017.02.007 PubMed DOI
Benn M., Watts G. F., Tybjaerg-Hansen A., Nordestgaard B. G. (2012). Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97 3956–3964. 10.1210/jc.2012-1563 PubMed DOI
Berge K. E., Tian H., Graf G. A., Yu L., Grishin N. V., Schultz J., et al. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290 1771–1775. 10.1126/science.290.5497.1771 PubMed DOI
Bertolini S., Pisciotta L., Rabacchi C., Cefalù A. B., Noto D., Fasano T., et al. (2013). Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy. Atherosclerosis 227 342–348. 10.1016/j.atherosclerosis.2013.01.007 PubMed DOI
Blaha V., Blaha M., Lanska M., Solichova D., Kujovska Krcmova L., Havel E., et al. (2017a). Lipoprotein apheresis in the treatment of dyslipidaemia - the Czech Republic experience. Physiol. Res. 66 S91–S100. PubMed
Blaha V., Blaha M., Solichova D., Kujovska Krcmova M., Lanska M., Havel E., et al. (2017b). Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscl. Suppl. 30 159–165. PubMed
Brinton E. A., Hopkins P. N., Hegele R. A., Geller A. S., Polisecki E. Y., Diffenderfer M. R., et al. (2018). The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. J. Clin. Lipidol. 12 152–161. 10.1016/j.jacl.2017.10.013 PubMed DOI
Brown M. S., Goldstein J. L. (1983). Lipoprotein metabolism in the macrophage: implications in cholesterol deposition in atherosclerosis0. Annu. Rev. Biochem. 52 223–261. PubMed
Ceska R., Freiberger T., Vaclova M., Aleksicova T., Votavova L., Vrablik M. (2017). ScreenPro FH: from the Czech MedPed to international collaboration. ScreenPro FH is a participating project of the EAS-FHCS. Physiol Res 66(Suppl. 1), S85–S90. 10.33549/physiolres.933599 PubMed DOI
Corral P., Geller A. S., Polisecki E. Y., Lopez G. I., Bañares V. G., Cacciagiu L., et al. (2018). Unusual genetic variants associated with hypercholesterolemia in Argentina. Atherosclerosis 277 256–261. 10.1016/j.atherosclerosis.2018.06.009 PubMed DOI
Cuchel M., Bruckert E., Ginsberg H. N., Raal F. J., Santos R. D., Hegele R. A., et al. (2014). Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the consensus panel on familial hypercholesterolaemia of the european atherosclerosis society. Eur. Heart J. 35 2146–2157. 10.1093/eurheartj/ehu274 PubMed DOI PMC
Currie G., Delles C. (2018). Precision medicine and personalized medicine in cardiovascular disease. Adv. Exp. Med. Biol. 1065 589-605. 10.1007/978-3-319-77932-4_36 PubMed DOI
Durst R., Ibe U. K., Shpitzen S., Schurr D., Eliav O., Futema M., et al. (2017). Molecular genetics of familial hypercholesterolemia in Israel-revisited. Atherosclerosis 257 55–63. 10.1016/j.atherosclerosis.2016.12.021 PubMed DOI
Farhan S. M., Hegele R. A. (2014). Exome sequencing: new insights into lipoprotein disorders. Curr. Cardiol. Rep. 16:507. 10.1007/s11886-014-0507-2 PubMed DOI
Fernández-Higuero J. A., Etxebarria A., Benito-Vicente A., Alves A. C., Arrondo J. L., Ostolaza H., et al. (2015). Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity. Sci. Rep. 5:18184. 10.1038/srep18184 PubMed DOI PMC
Futema M., Bourbon M., Williams M., Humphries S. E. (2018). Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. Atherosclerosis 277 457–463. 10.1016/j.atherosclerosis.2018.06.006 PubMed DOI
Futema M., Plagnol V., Li K., Whittall R. A., Neil H. A., Seed M., et al. (2014). Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. J. Med. Genet. 51 537–544. 10.1136/jmedgenet-2014-102405 PubMed DOI PMC
Futema M., Shah S., Cooper J. A., Li K., Whittall R. A., Sharifi M., et al. (2015). Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Clin. Chem. 61 231–238. 10.1373/clinchem.2014.231365 PubMed DOI PMC
Garcia C. K., Wiklund K., Arca M., Zuliani G., Fellin R., Maioli M., et al. (2001). Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292 1394–1398. 10.1126/science.1060458 PubMed DOI
Gaspar I. M., Gaspar A. (2019). Variable expression and penetrance in Portuguese families with Familial Hypercholesterolemia with mild phenotype. Atheroscl. Suppl. 36 28–30. 10.1016/j.atherosclerosissup.2019.01.006 PubMed DOI
Goldstein J. L., Kottke B. A., Brown M. S. (1982). Biochemical genetics of LDL receptor mutations in familial hypercholesterolemia. Prog. Clin. Biol. Res. 103(Pt. B), 161–176. PubMed
Grave N., Tovo-Rodrigues L., da Silveira J., Rovaris D. L., Dal Bosco S. M., Contini V., et al. (2016). A vitamin D pathway gene-gene interaction affects low-density lipoprotein cholesterol levels. J. Nutr. Biochem. 38 12–17. 10.1016/j.jnutbio.2016.08.002 PubMed DOI
Guirgis F. W., Donnelly J. P., Dodani S., Howard G., Safford M. M., Levitan E. B., et al. (2016). Cholesterol levels and long-term rates of community-acquired sepsis. Crit Care. 20:408. 10.1186/s13054-016-1579-8 PubMed DOI PMC
Han S., Hwang M. Y., Yoon K., Kim Y. K., Kim Y. J., Kim B. J., et al. (2019). Exome chip-driven association study of lipidemia in >14,000 Koreans and evaluation of genetic effect on identified variants between different ethnic groups. Genet. Epidemiol. 43 617–628. 10.1002/gepi.22208 PubMed DOI
Hegele R. A., Ban M. R., Cao H., McIntyre A. D., Robinson J. F., Wang J. (2015). Targeted next-generation sequencing in monogenic dyslipidemias. Curr. Opin. Lipidol. 26 103–113. 10.1097/MOL.0000000000000163 PubMed DOI
Hu P., Dharmayat K. I., Stevens C. A. T., Sharabiani M. T. A., Jones R. S., Watts G. F., et al. (2020). Prevalence of Familial Hypercholesterolemia Among the general population and patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Circulation 141 1742–1759. 10.1161/CIRCULATIONAHA.119.044795 PubMed DOI
Hubacek J. A. (2009). Eat less and exercise more - is it really enough to knock down the obesity pandemia? Physiol. Res. 58(Suppl. 1), S1–S6. PubMed
Hubacek J. A., Adamkova V., Lanska V., Dlouha D. (2017). Polygenic hypercholesterolemia: examples of GWAS results and their replication in the Czech-Slavonic population. Physiol. Res. 66(Suppl. 1), S101–S111. 10.33549/physiolres.933580 PubMed DOI
Hubacek J. A., Berge K. E., Cohen J. C., Hobbs H. H. (2001). Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum. Mutat. 18 359–360. 10.1002/humu.1206 PubMed DOI
Hubacek J. A., Dlouha D., Adamkova V., Schwarzova L., Lanska V., Ceska R., et al. (2019). The gene score for predicting hypertriglyceridemia: new insights from a Czech case-control study. Mol. Diagn. Ther. 23 555–562. PubMed
Hubacek J. A., Lanska V., Skodova Z., Adamkova V., Poledne R. (2008). Sex-specific interaction between APOE and APOA5 variants and determination of plasma lipid levels. Eur. J. Hum. Genet. 16 135–138. 10.1038/sj.ejhg.5201941 PubMed DOI
Hubacek J. A., Pitha J., Skodova Z., Poledne R., Lanska V., Waterworth D. M., et al. (2003). Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA study. Clin. Biochem. 36 263–267. 10.1016/s0009-9120(03)00025-0 PubMed DOI
Iacocca M. A., Chora J. R., Carrie A., Freiberger T., Leigh S. E., Defesche J. C., et al. (2018). ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum. Mutat. 39 1631–1640. PubMed PMC
Johansen C. T., Dubé J. B., Loyzer M. N., MacDonald A., Carter D. E., McIntyre A. D., et al. (2014). LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J. Lipid. Res. 55 765–772. 10.1194/jlr.D045963 PubMed DOI PMC
Khera A. V., Won H. H., Peloso G. M., Lawson K. S., Bartz T. M., Deng X., et al. (2016). Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J. Am. Coll. Cardiol. 67 2578–2589. 10.1016/j.jacc.2016.03.520 PubMed DOI PMC
Kim D. S., Burt A. A., Ranchalis J. E., Jarvik E. R., Rosenthal E. A., Hatsukami T. S., et al. (2013). Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol. J. Lipid. Res. 54 1512–1520. 10.1194/jlr.P035238 PubMed DOI PMC
Komarova T. Y., Korneva V. A., Kuznetsova T. Y., Golovina A. S., Vasilyev V. B., Mandelshtam M. Y. (2013). Familial hypercholesterolemia mutations in Petrozavodsk: no similarity to St. Petersburg mutation spectrum. BMC Med. Genet. 14:128. 10.1186/1471-2350-14-128 PubMed DOI PMC
Lange L. A., Hu Y., Zhang H., Xue C., Schmidt E. M., Tang Z. Z., et al. (2014). Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am. J. Hum. Genet. 94 233–245. 10.1016/j.ajhg.2014.01.010 PubMed DOI PMC
Langsted A., Kamstrup P. R., Benn M., Tybjaerg-Hansen A., Nordestgaard B. G. (2016). High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diab. Endocrinol. 4 577–587. 10.1016/S2213-8587(16)30042-0 PubMed DOI
Lee M. H., Lu K., Hazard S., Yu H., Shulenin S., Hidaka H., et al. (2001). Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet. 27 79–83. 10.1038/83799 PubMed DOI PMC
Leigh S., Futema M., Whittall R., Taylor-Beadling A., Williams M., denDunnen J. T., et al. (2017). The UCL low-density lipoprotein receptor gene variant database: pathogenicity update. J. Med. Genetics 54 217–223. 10.1136/jmedgenet-2016-104054 PubMed DOI PMC
Leren T. P. (2004). Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin. Genet. 65 419–422. 10.1111/j.0009-9163.2004.0238.x PubMed DOI
Loscalso J. (2004). Molecular Mechanisms of Atherosclerosis. Boca Raton, FL: CRC press.
Ma L., Brautbar A., Boerwinkle E., Sing C. F., Clark A. G., Keinan A. (2012). Knowledge-driven analysis identifies a gene-gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. PLoS Genet. 8:e1002714. 10.1371/journal.pgen.1002714 PubMed DOI PMC
Marduel M., Carrié A., Sassolas A., Devillers M., Carreau V., Di Filippo M., et al. (2010). Molecular spectrum of autosomal dominant hypercholesterolemia in France. Hum. Mutat. 31 E1811–E1824. 10.1002/humu.21348 PubMed DOI PMC
Marmontel O., Charrière S., Simonet T., Bonnet V., Dumont S., Mahl M., et al. (2018). Single, short in-del, and copy number variations detection in monogenic dyslipidemia using a next-generation sequencing strategy. Clin. Genet. 94 132–140. 10.1111/cge.13250 PubMed DOI
Mikhailova S., Ivanoshchuk D., Timoshchenko O., Shakhtshneider E. (2019). Genes potentially associated with familial hypercholesterolemia. Biomolecules 9:807. 10.3390/biom9120807 PubMed DOI PMC
Moghadasian M. H., Frohlich J. J., Scudamore C. H. (2002). Specificity of the commonly used enzymatic assay for plasma cholesterol determination. J. Clin. Pathol. 55 859–861. 10.1136/jcp.55.11.859 PubMed DOI PMC
Naoumova R. P., Tosi I., Patel D., Neuwirth C., Horswell S. D., Marais A. D., et al. (2005). Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscl. Thromb. Vasc. Biol. 25 2654–2660. 10.1161/01.ATV.0000190668.94752.ab PubMed DOI
Norsworthy P. J., Vandrovcova J., Thomas E. R., Campbell A., Kerr S. M., Biggs J., et al. (2014). Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study. BMC Med. Genet. 15:70. 10.1186/1471-2350-15-70 PubMed DOI PMC
O’Brien E. C., Roe M. T., Fraulo E. S., Peterson E. D., Ballantyne C. M., Genest J., et al. (2014). Rationale and design of the familial hypercholesterolemia foundation CAscade SCreening for Awareness and DEtection of Familial Hypercholesterolemia registry. Am. Heart J. 167 342–349. 10.1016/j.ahj.2013.12.008 PubMed DOI
Ogura M. (2018). PCSK9 inhibition in the management of familial hypercholesterolemia. J. Cardiol. 71 1–7. 10.1016/j.jjcc.2017.07.002 PubMed DOI
Page M. M., Bell D. A., Watts G. F. (2020). Widening the spectrum of genetic testing in familial hypercholesterolaemia: will it translate into better patient, and population outcomes? Clin. Genet. 97 543–555. PubMed
Paquette M., Chong M., Thériault S., Dufour R., Paré G., Baass A. (2017). Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 11 725.e5–732.e5. 10.1016/j.jacl.2017.03.019 PubMed DOI
Pedersen J. C., Berg K. (1990). gene interaction between the low-density lipoprotein receptor and apolipoprotein E loci affects lipid levels. Clin. Genet. 38 287–294. 10.1111/j.1399-0004.1990.tb03583.x PubMed DOI
Pek S. L. T., Dissanayake S., Fong J. C. W., Lin M. X., Chan E. Z. L., Tang J. I., et al. (2018). Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: single center study. Atherosclerosis 269 106–116. 10.1016/j.atherosclerosis.2017.12.028 PubMed DOI
Pirillo A., Garlaschelli K., Arca M., Averna M., Bertolini S., Calandra S., et al. (2017). Spectrum of mutations in Italian patients with familial hypercholesterolemia: new results from the LIPIGEN study. Atheroscl. Suppl. 29 17–24. 10.1016/j.atherosclerosissup.2017.07.002 PubMed DOI
Poledne R., Hubacek J., Pisa Z., Pistulkova H., Valenta Z. (1994). Genetic markers in hypercholesterolemic and normocholesterolemic Czech children. Clin. Genet. 46 88–91. 10.1111/j.1399-0004.1994.tb04208.x PubMed DOI
Rader D. J., Sheth S. (2019). Polygenic risk scores in familial hypercholesterolemia. J. Am. Coll. Cardiol. 74 523–525. 10.1016/j.jacc.2019.06.006 PubMed DOI
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. (2015). Standards and guidelines for theinterpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet.Med. 17 405–424. PubMed PMC
Ritchie M. D. (2015). Finding the epistasis needles in the genome-wide haystack. Methods Mol. Biol. 1253 19–33. 10.1007/978-1-4939-2155-3_2 PubMed DOI
Santos R. D., Bourbon M., Alonso R., Cuevas A., Vasques-Cardenas N. A., Pereira A. C., et al. (2017). Clinical and molecular aspects of familial hypercholesterolemia in Ibero-American countries. J. Clin. Lipidol. 11 160–166. 10.1016/j.jacl.2016.11.004 PubMed DOI
Sharifi M., Futema M., Nair D., Humphries S. E. (2019). Polygenic hypercholesterolemia and cardiovascular disease risk. Curr. Cardiol. Rep. 21:43. 10.1007/s11886-019-1130-z PubMed DOI PMC
Shirts B. H., Howard M. T., Hasstedt S. J., Nanjee M. N., Knight S., Carlquist J. F., et al. (2012). Vitamin D dependent effects of APOA5 polymorphisms on HDL cholesterol. Atherosclerosis 222 167–174. 10.1016/j.atherosclerosis.2012.02.030 PubMed DOI PMC
Sijbrands E. J., Westendorp R. G., Defesche J. C., de Meier P. H., Smelt A. H., Kastelein J. J. (2001). Mortality over two centuries in large pedigree with familial hypercholesterolaemia: family tree mortality study. BMJ 322 1019–1023. 10.1136/bmj.322.7293.1019 PubMed DOI PMC
Stefanutti C., Zenti M. G. (2018). Lipoprotein apheresis and PCSK9-Inhibitors. impact on atherogenic lipoproteins and anti-inflammatory mediators in familial Hypercholesterolaemia. Curr. Pharm. Des. 24 3634–3637. PubMed
Sturm A. C., Knowles J. W., Gidding S. S., Ahmad Z. S., Ahmed C. D., Ballantyne C. M., et al. (2018). Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. J. Am. Coll. Cardiol. 72 662–680. 10.1016/j.jacc.2018.05.044 PubMed DOI
Sun D., Zhou B. Y., Li S., Sun N. L., Hua Q., Wu S. L., et al. (2018). Genetic basis of index patients with familial hypercholesterolemia in Chinese population: mutation spectrum and genotype-phenotype correlation. Lipids Health Dis. 17:252. 10.1186/s12944-018-0900-8 PubMed DOI PMC
Tada H., Kawashiri M. A., Nomura A., Teramoto R., Hosomichi K., Nohara A., et al. (2018). Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease. J. Clin. Lipidol. 12 1436–1444. 10.1016/j.jacl.2018.08.006 PubMed DOI
Talmud P. J., Shah S., Whittall R., Futema M., Howard P., Cooper J. A., et al. (2013). Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet 381 1293–1301. 10.1016/S0140-6736(12)62127-8 PubMed DOI
Tichý L., Fajkusova L., Zapletalova P., Schwarzova L., Vrablík M., Freiberger T. (2017). Molecular genetic background of an autosomal dominant hypercholesterolemia in the Czech Republic. Physiol. Res. 66(Suppl. 1), S47–S54. 10.33549/physiolres.933587 PubMed DOI
Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. (2012). The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis 223 401–408. 10.1016/j.atherosclerosis.2012.05.014 PubMed DOI
Timms K. M., Wagner S., Samuels M. E., Forbey K., Goldfine H., Jammulapati S., et al. (2004). A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet. 114 349–353. 10.1007/s00439-003-1071-9 PubMed DOI
Tveten K., Strøm T. B., Cameron J., Berge K. E., Leren T. P. (2012). Mutations in the SORT1 gene are unlikely to cause autosomal dominant hypercholesterolemia. Atherosclerosis 225 370–375. 10.1016/j.atherosclerosis.2012.10.026 PubMed DOI
Vallejo-Vaz A. J., Kondapally Seshasai S. R., Cole D., Hovingh G. K., Kastelein J. J., Mata P., et al. (2015). Familial hypercholesterolaemia: A global call to arms. Atherosclerosis 243 257–259. 10.1016/j.atherosclerosis.2015.09.021 PubMed DOI
Vrablik M., Raslova K., Vohnout B., Blaha V., Satny M., Kyselak O., et al. (2018). Real-life LDL-C treatment goals achievement in patients with heterozygous familial hypercholesterolemia in the Czech Republic and Slovakia: results of the PLANET registry. Atherosclerosis 277 355–361. 10.1016/j.atherosclerosis.2018.08.008 PubMed DOI
Vrablik M., Zlatohlavek L., Stulc T., Adamkova V., Prusikova M., Schwarzova L., et al. (2014). Statin-associated myopathy: from genetic predisposition to clinical management. Physiol. Res. 63(Suppl. 3), S327–S334. PubMed
Watts G. F., Ding P. Y., George P., Hagger M. S., Hu M., Lin J., et al. (2016). Translational research for improving the care of familial hypercholesterolemia: the “ten countries study” and beyond. J. Atheroscler. Thromb. 23 891–900. 10.5551/jat.35949 PubMed DOI PMC
Williams R. R., Hasstedt S. J., Wilson D. E., Ash K. O., Yanowitz F. F., Reiber G. E., et al. (1986). Evidence that men with familial hypercholesterolemia can avoid early coronary death. An analysis of 77 gene carriers in four Utah pedigrees. JAMA 255 219–224. PubMed
Yang K. C., Su Y. N., Shew J. Y., Yang K. Y., Tseng W. K., Wu C. C., et al. (2007). LDLR and ApoB are major genetic causes of autosomal dominant hypercholesterolemia in a Taiwanese population. J. Formos. Med. Assoc. 106 799–807. 10.1016/S0929-6646(08)60044-3 PubMed DOI
Zaffiri L., Gardner J., Toledo-Pereyra L. H. (2012). History of antibiotics. From salvarsan to cephalosporins. J. Invest. Surg. 25 67–77. 10.3109/08941939.2012.664099 PubMed DOI
Zlatohlavek L., Zídkova K., Vrablík M., Haas T., Prusíkova M., Svobodova H., et al. (2008). Lipoprotein(a) and its position among other risk factors of atherosclerosis. Physiol. Res. 57 777–783. PubMed
APOL1 polymorphisms are not influencing acute coronary syndrome risk in Czech males
Cholesterol associated genetic risk score and acute coronary syndrome in Czech males
Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia
The APOE4 allele is associated with a decreased risk of retinopathy in type 2 diabetics