The APOE4 allele is associated with a decreased risk of retinopathy in type 2 diabetics
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-01-00046
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34328600
DOI
10.1007/s11033-021-06581-w
PII: 10.1007/s11033-021-06581-w
Knihovny.cz E-zdroje
- Klíčová slova
- Apolipoprotein E, Gender, Polymorphism, Retinopathy, T2DM,
- MeSH
- alely MeSH
- apolipoprotein E4 genetika metabolismus MeSH
- apolipoproteiny E genetika metabolismus MeSH
- diabetes mellitus 2. typu genetika metabolismus MeSH
- diabetická retinopatie genetika metabolismus MeSH
- dospělí MeSH
- frekvence genu genetika MeSH
- genetická predispozice k nemoci genetika MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- ApoE protein, human MeSH Prohlížeč
- apolipoprotein E4 MeSH
- apolipoproteiny E MeSH
BACKGROUND: Common polymorphisms within the apolipoprotein E (APOE) gene are suggested to be associated with the development of type 2 diabetes mellitus (T2DM), but the potential association with T2DM complications (nephropathy, neuropathy and retinopathy) remains unclear. We perform the case-control study to analyse the association between the APOE polymorphism and risk of T2DM and to analysed the potential relationship between the APOE and T2DM complications. METHODS AND RESULTS: APOE variants (rs429358 and rs7412) were genotyped by TaqMan assay in T2DM patients (N = 1274; N = 829 with complications including retinopathy, neuropathy and nephropathy status) and with PCR-RFLP in healthy nondiabetic controls (N = 2055). The comparison of subjects with genotypes associated with low plasma cholesterol (APOE2/E2 and APOE2/E3 carriers vs. others) did not show an association with T2DM (OR [95% CI] = 0.88 [0.71-1.08). The differences remained insignificant after adjusting for diabetes duration, sex and BMI. Carriers of at least one APOE4 allele (rs429358) are protected against T2DM related retinopathy (OR [95% CI] = 0.65 [0.42-0.99]. Protection against retinopathy is driven mostly by females (OR [95% CI] = 0.50 [0.25-0.99]); and remains significant (P = 0.044) after adjustment for diabetes duration and BMI. CONCLUSION: Common APOE polymorphism was not associated with T2DM in the Czech population. Yet, APOE4 allele revealed an association with retinopathy. In particular, female T2DM patients with at least one APOE4 allele exhibit lower prevalence of retinopathy in our study subjects.
Zobrazit více v PubMed
Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151 PubMed DOI PMC
Tao Z, Shi A, Zhao J (2015) Epidemiological perspectives of diabetes. Cell Biochem Biophys 73:181–185. https://doi.org/10.1007/s12013-015-0598-4 PubMed DOI PMC
Balakumar P, Maung-U K, Jagadeesh G (2016) Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res 113:600–609. https://doi.org/10.1016/j.phrs.2016.09.040 PubMed DOI PMC
Fletcher B, Gulanick M, Lamendola C (2002) Risk factors for type 2 diabetes mellitus. J Cardiovasc Nurs 16:17–23. https://doi.org/10.1097/00005082-200201000-00003 PubMed DOI PMC
Stephenson EJ, Smiles W, Hawley JA (2014) The relationship between exercise, nutrition and type 2 diabetes. Med Sport Sci 60:1–10. https://doi.org/10.1159/000357331 PubMed DOI PMC
Hubácek JA (2009) Eat less and exercise more - is it really enough to knock down the obesity pandemia? Physiol Res 58(Suppl 1):S1–S6 DOI
Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M et al (2017) Energy balance and obesity: what are the main drivers? Cancer Causes Control 28:247–258. https://doi.org/10.1007/s10552-017-0869-z PubMed DOI PMC
Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16:377–390. https://doi.org/10.1038/s41581-020-0278-5 PubMed DOI PMC
Dlouhá D, Hubáček JA (2012) FTO gene and his role in genetic determination of obesity. Article in Czech Vnitr Lek 58:208–215 PubMed PMC
Stančáková A, Laakso M (2016) Genetics of type 2 diabetes. Endocr Dev 31:203–220. https://doi.org/10.1159/000439418 PubMed DOI PMC
Climent E, Pérez-Calahorra S, Marco-Benedí V, Plana N, Sánchez R, Ros E et al (2017) Effect of LDL cholesterol, statins and presence of mutations on the prevalence of type 2 diabetes in heterozygous familial hypercholesterolemia. Sci Rep 7:5596. https://doi.org/10.1038/s41598-017-06101-6 PubMed DOI PMC
Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK (2015) Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313:1029–1036. https://doi.org/10.1001/jama.2015.1206 PubMed DOI PMC
Maki KC, Diwadkar-Navsariwala V, Kramer MW (2018) Statin use and risk for type 2 diabetes: what clinicians should know. Postgrad Med 130:166–172. https://doi.org/10.1080/00325481.2018.1402658 PubMed DOI PMC
Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM et al (2016) Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316:1383–1391. https://doi.org/10.1001/jama.2016.14568 PubMed DOI PMC
Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, Shah T et al (2015) HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385:351–361. https://doi.org/10.1016/S0140-6736(14)61183-1 PubMed DOI PMC
Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8:1–21. https://doi.org/10.1161/01.atv.8.1.1 PubMed DOI PMC
Hubacek JA, Vrablik M (2011) Effect of apolipoprotein E polymorphism on statin-induced decreases in plasma lipids and cardiovascular events. Drug Metabol Drug Interact 26:13–20. https://doi.org/10.1515/DMDI.2011.107 PubMed DOI PMC
Hubácek JA, Pitha J, Adámková V, Skodová Z, Lánská V, Poledne R (2003) Apolipoprotein E and apolipoprotein CI polymorphisms in the Czech population: almost complete linkage disequilibrium of the less frequent alleles of both polymorphisms. Physiol Res 52:195–200 PubMed PMC
Anthopoulos PG, Hamodrakas SJ, Bagos PG (2010) Apolipoprotein E polymorphisms and type 2 diabetes: a meta-analysis of 30 studies including 5423 cases and 8197 controls. Mol Genet Metab 100:283–291. https://doi.org/10.1016/j.ymgme.2010.03.008 PubMed DOI PMC
Yin YW, Qiao L, Sun QQ, Hu AM, Liu HL, Wang Q et al (2014) Influence of apolipoprotein E gene polymorphism on development of type 2 diabetes mellitus in Chinese Han population: a meta-analysis of 29 studies. Metabolism 63:532–541. https://doi.org/10.1016/j.metabol.2013.12.008 PubMed DOI PMC
Xiying M, Wenbo W, Wangyi F, Qinghuai L (2017) Association of apolipoprotein E polymorphisms with age-related macular degeneration subtypes: an updated systematic review and meta-analysis. Arch Med Res 48:370–377. https://doi.org/10.1016/j.arcmed.2017.08.002 PubMed DOI PMC
Toops KA, Tan LX, Lakkaraju A (2016) Apolipoprotein E isoforms and AMD. Adv Exp Med Biol 854:3–9. https://doi.org/10.1007/978-3-319-17121-0_1 PubMed DOI PMC
Mahley RW (2016) Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36:1305–1315. https://doi.org/10.1161/ATVBAHA.116.307023 PubMed DOI PMC
Hubacek JA, Bloudickova S, Kubinova R, Pikhart H, Viklicky O, Bobak M (2009) Apolipoprotein E polymorphism in hemodialyzed patients and healthy controls. Biochem Genet 47:688–693. https://doi.org/10.1007/s10528-009-9266-y PubMed DOI PMC
Xue C, Nie W, Tang D, Yi L, Mei C (2013) Apolipoprotein E gene variants on the risk of end stage renal disease. PLoS ONE 8:e83367. https://doi.org/10.1371/journal.pone.0083367 PubMed DOI PMC
Hubáček JA, Neškudla T, Klementová M, Adámková V, Pelikánová T (2013) Tagging rs10811661 variant at CDKN2A/2B locus is not associated with type 2 diabetes mellitus in Czech population. Folia Biol (Praha) 59:168–171
Hubacek JA, Dlouha D, Klementova M, Lanska V, Neskudla T, Pelikanova T (2018) The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene 642:220–224. https://doi.org/10.1016/j.gene.2017.11.040 PubMed DOI PMC
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS et al (2011) Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabet Care 34:e61–e69. https://doi.org/10.2337/dc11-9998 DOI
Jones AG, Hattersley AT (2013) The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 30:803–817. https://doi.org/10.1111/dme.12159 PubMed DOI PMC
Cífková R, Bruthans J, Wohlfahrt P, Krajčoviechová A, Šulc P, Jozífová M et al (2020) 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985–2016/17. PLoS ONE 15:e0232845. https://doi.org/10.1371/journal.pone.0232845 PubMed DOI PMC
Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. https://doi.org/10.1093/nar/16.3.1215 PubMed DOI PMC
Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548 DOI
Hubacek JA, Pitha J, Skodová Z, Adámková V, Lánská V, Poledne R (2001) A possible role of apolipoprotein E polymorphism in predisposition to higher education. Neuropsychobiology 43:200–203. https://doi.org/10.1159/000054890 PubMed DOI PMC
Hubáček JA, Pikhart H, Peasey A, Kubínová R, Bobák M (2015) Nobody is perfect: comparison of the accuracy of PCR-RFLP and KASP™ method for genotyping. ADH1B and FTO polymorphisms as examples. Folia Biol (Praha) 61:156–160
Tao QQ, Chen Y, Liu ZJ, Sun YM, Yang P, Lu SJ et al (2014) Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. Clin Interv Aging 9:1063–1067. https://doi.org/10.2147/CIA.S62554 PubMed DOI PMC
Fuentes F, Alcala-Diaz JF, Watts GF, Alonso R, Muñiz O, Díaz-Díaz JL et al (2015) Statins do not increase the risk of developing type 2 diabetes in familial hypercholesterolemia: the SAFEHEART study. Int J Cardiol 201:79–84. https://doi.org/10.1016/j.ijcard.2015.07.107 PubMed DOI PMC
Vrablik M, Tichy L, Freiberger T, Blaha V, Satny M, Hubacek JA (2020) Genetics of familial hypercholesterolemia: new insights. Front Genet 11:574474. https://doi.org/10.3389/fgene.2020.574474 PubMed DOI PMC
Joyce NR, Zachariah JP, Eaton CB, Trivedi AN, Wellenius GA (2017) Statin use and the risk of type 2 diabetes mellitus in children and adolescents. Acad Pediatr 17:515–522. https://doi.org/10.1016/j.acap.2017.02.006 PubMed DOI PMC
Talmud PJ, Cooper JA, Morris RW, Dudbridge F, Shah T, Engmann J et al (2015) Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 64:1830–1840. https://doi.org/10.2337/db14-1504 PubMed DOI PMC
Grarup N, Sandholt CH, Hansen T, Pedersen O (2014) Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57:1528–1541. https://doi.org/10.1007/s00125-014-3270-4 PubMed DOI PMC
Nurieva O, Hubacek JA, Urban P, Hlusicka J, Diblik P, Kuthan P et al (2019) Clinical and genetic determinants of chronic visual pathway changes after methanol - induced optic neuropathy: four-year follow-up study. Clin Toxicol (Phila) 57:387–397. https://doi.org/10.1080/15563650.2018.1532083 DOI
Zhang P, Gao J, Pu C, Zhang Y (2017) Apolipoprotein status in type 2 diabetes mellitus and its complications (Review). Mol Med Rep 16:9279–9286. https://doi.org/10.3892/mmr.2017.7831 PubMed DOI PMC
Moreno JA, Pérez-Jiménez F, Moreno-Luna R, Pérez-Martínez P, Fuentes-Jiménez F, Marín C et al (2009) The effect of apoE genotype and sex on ApoE plasma concentration is determined by dietary fat in healthy subjects. Br J Nutr 101:1745–1752. https://doi.org/10.1017/S0007114508111515 PubMed DOI PMC
Zhou Z, Hoke A, Cornblath DR, Griffin JW, Polydefkis M (2005) APOE epsilon4 is not a susceptibility gene in idiopathic or diabetic sensory neuropathy. Neurology 64:139–141. https://doi.org/10.1212/01.WNL.0000148587.97690.4E PubMed DOI PMC
Monastiriotis C, Papanas N, Trypsianis G, Karanikola K, Veletza S, Maltezos E (2013) The ε4 allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients. Angiology 64:451–455. https://doi.org/10.1177/0003319712453645 PubMed DOI PMC
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM et al (2018) APOE gene and neuropsychiatric disorders and endophenotypes: a comprehensive review. Am J Med Genet B Neuropsychiatr Genet 177:126–142. https://doi.org/10.1002/ajmg.b.32516 PubMed DOI PMC