Familial Hypercholesterolemia: Real-World Data of 1236 Patients Attending a Czech Lipid Clinic. A Retrospective Analysis of Experience in More than 50 years. Part I: Genetics and Biochemical Parameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35295947
PubMed Central
PMC8918685
DOI
10.3389/fgene.2022.849008
PII: 849008
Knihovny.cz E-zdroje
- Klíčová slova
- ASCVD, ApoB, ApoE isoform, LDL-C, Lp(a), familial defective apolipoprotein B-100, familial hypercholesterolemia, statin,
- Publikační typ
- časopisecké články MeSH
Introduction: The cause of familial hypercholesterolemia (FH) is defect in LDL receptor or familial defect of apolipoprotein B-100 (FDB) or, rarely, defect in proprotein convertase subtilisin/kexin type 9. Identification and treatment of patients with FH improves their prognosis. Our data represent retrospective analysis of 50 years of specialised care in our center. Patients and Methods: A group of 1236 FH patients (841 women, 395 men; 993 study subjects and 243 relatives; mean age 44.8 ± 16.7 years) included 154 FDB patients followed at the Lipid Clinic of the General University Hospital in Prague since the mid-1960s to the present. Clinical diagnosis was based on the Dutch Lipid Clinic Network Criteria. Genetic analysis was performed using PCR-RFLP to detect FDB and apolipoprotein E (APOE) polymorphism. Biochemical data were collected and statistically analysed. Results: At baseline, mean LDL-C and total cholesterol (TC) levels of all FH patients combined were 6.49 ± 1.92 mmol/L and 8.95 ± 1.95 mmol/L, respectively. Their LDL-C levels decreased to 3.26 ± 1.57 mmol/L and TC levels to 5.43 ± 1.69 mmol/L during follow-up. In the subgroup of LDL receptor-mediated FH (non-FDB) patients, baseline LDL-C and TC levels of 6.61 ± 1.95 mmol/L and 9.09 ± 1.97 mmol/L declined to 3.21 ± 1.60 mmol/L and 5.39 ± 1.72 mmol/L, respectively, during follow-up. In the FDB subgroup of patients, baseline levels of LDL-C and TC were 5.57 ± 1.46 mmol/L and 7.88 ± 1.58 mmol/L decreasing to 3.45 ± 0.24 mmol/L and 5.58 ± 1.37 mmol/L, respectively, during follow-up. Differences were also found in the effects of various APOE isoforms on lipid lowering. A significant decrease in lipid parameters was observed with the E2E2 isoform whereas a minimal decrease was seen with the E4E4 and E3E3 isoforms. Conclusion: Whereas, overall, non-FDB patients had higher baseline lipid levels, these levels declined more appreciably compared with FDB patients during follow-up. Our retrospective analysis also found different effects of APOE isoforms on the decrease in lipid levels.
Zobrazit více v PubMed
Altschmiedova T., Todorovova V., Vrablik M., Ceska R. (2022). Familial hypercholesterolemia: Real-world data of 1236 patients attending a Czech lipid clinic. A retrospective analysis of experience in more than 50 years. Part II. Clinical characteristics. [Preprint]. Available at: https://www.frontiersin.org/articles/10.3389/fgene.2022.849267/abstract (Accessed February 9, 2022). PubMed DOI PMC
Benn M., Watts G. F., Tybjærg-Hansen A., Nordestgaard B. G. (2016). Mutations Causative of Familial Hypercholesterolaemia: Screening of 98 098 Individuals from the Copenhagen General Population Study Estimated a Prevalence of 1 in 217. Eur. Heart J. 37, 1384–1394. 10.1093/eurheartj/ehw028 PubMed DOI
Bhatnagar D., Morgan J., Siddiq S., Mackness M. I., Miller J. P., Durrington P. N. (2000). Outcome of Case Finding Among Relatives of Patients with Known Heterozygous Familial. Br. Med. J. 321, 1497. 10.1136/bmj.321.7275.1497 PubMed DOI PMC
Brown M. S., Goldstein J. L. (1986). A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science 232, 34–47. 10.1126/science.3513311 PubMed DOI
Ceska R., Latkovskis G., Ezhov M. V., Freiberger T., Lalic K., Mitchenko O., et al. (2019). The Impact of the International Cooperation on Familial Hypercholesterolemia Screening and Treatment: Results from the ScreenPro FH Project. Curr. Atheroscler. Rep. 21, 36. 10.1007/s11883-019-0797-3 PubMed DOI PMC
Cuchel M., Bruckert E., Ginsberg H. N., Raal F. J., Santos R. D., Hegele R. A., et al. (2014). Homozygous Familial Hypercholesterolaemia: New Insights and Guidance for Clinicians to Improve Detection and Clinical Management. A Position Paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157. 10.1093/eurheartj/ehu274 PubMed DOI PMC
Eichner J. E., Dunn S. T., Perveen G., Thompson D. M., Stewart K. E., Stroehla B. C. (2002). Apolipoprotein E Polymorphism and Cardiovascular Disease: a HuGE Review. Am. J. Epidemiol. 155, 487–495. 10.1093/aje/155.6.487 PubMed DOI
Ferrières J., Sing C. F., Roy M., Davignon J., Lussier-Cacan S. (1994). Apolipoprotein E Polymorphism and Heterozygous Familial Hypercholesterolemia. Sex-specific Effects. Arterioscler. Thromb. 14, 1553–1560. 10.1161/01.atv.14.10.1553 PubMed DOI
Fouchier S. W., Defesche J. C., Kastelein J. J., Sijbrands E. J. (2004). Familial Defective Apolipoprotein B versus Familial Hypercholesterolemia: an Assessment of Risk. Semin. Vasc. Med. 4, 259–264. 10.1055/s-2004-861493 PubMed DOI
Gaffney D., Forster L., Caslake M. J., Bedford D., Stewart J. P., Stewart G., et al. (2002). Comparison of Apolipoprotein B Metabolism in Familial Defective Apolipoprotein B and Heterogeneous Familial Hypercholesterolemia. Atherosclerosis 162, 33–43. 10.1016/s0021-9150(01)00679-7 PubMed DOI
Gagné C., Gaudet D., Bruckert E. (2002). Efficacy and Safety of Ezetimibe Coadministered with Atorvastatin or Simvastatin in Patients with Homozygous Familial Hypercholesterolemia. Circulation 105, 2469–2475. 10.1161/01.CIR.0000018744.58460.62 PubMed DOI
Huebbe P., Rimbach G. (2017). Evolution of Human Apolipoprotein E (APOE) Isoforms: Gene Structure, Protein Function and Interaction with Dietary Factors. Ageing Res. Rev. 37, 146–161. 10.1016/j.arr.2017.06.002 PubMed DOI
Innerarity T. L., Weisgraber K. H., Arnold K. S., Mahley R. W., Krauss R. M., Vega G. L., et al. (1987). Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding. Proc. Natl. Acad. Sci. 84, 6919–6923. 10.1073/pnas.84.19.6919 PubMed DOI PMC
Jarauta E., Pérez-Ruiz M. R., Pérez-Calahorra S., Mateo-Gallego R., Cenarro A., Cofán M., et al. (2016). Lipid Phenotype and Heritage Pattern in Families with Genetic Hypercholesterolemia Not Related to LDLR, APOB, PCSK9, or APOE. J. Clin. Lipidol. 10, 1397–1405. e2. 10.1016/j.jacl.2016.09.011 PubMed DOI
Khalil Y. A., Rabès J.-P., Boileau C., Varret M. (2021). APOE Gene Variants in Primary Dyslipidemia. Atherosclerosis 328, 11–22. 10.1016/j.atherosclerosis.2021.05.007 PubMed DOI
Miller S. A., Dykes D. D., Polesky H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16(3), 1215. PubMed PMC
Miserez A. R., Laager R., Chiodetti N., Keller U. (1994). High Prevalence of Familial Defective Apolipoprotein B-100 in Switzerland. J. Lipid Res. 35, 574–583. 10.1016/s0022-2275(20)41171-x PubMed DOI
Miserez A. R., Muller P. Y. (2000). Familial Defective Apolipoprotein B-100: a Mutation Emerged in the Mesolithic Ancestors of Celtic Peoples? Atherosclerosis 148, 433–436. 10.1016/s0021-9150(99)00470-0 PubMed DOI
Muñoz S. S., Garner B., Ooi L. (2019). Understanding the Role of ApoE Fragments in Alzheimer's Disease. Neurochem. Res. 44, 1297–1305. 10.1007/s11064-018-2629-1 PubMed DOI
Phillips M. C. (2014). Apolipoprotein e isoforms and lipoprotein metabolism. IUBMB Life 66, 616–623. 10.1002/iub.1314 PubMed DOI
Pirillo A., Garlaschelli K., Arca M., Averna M., Bertolini S., Calandra S., et al. (2017). Spectrum of Mutations in Italian Patients with Familial Hypercholesterolemia: New Results from the LIPIGEN Study. Atheroscler. Supplements 29, 17–24. 10.1016/j.atherosclerosissup.2017.07.002 PubMed DOI
Rashidi O. M., H.Nazar F. A., Alama M. N., Awan Z. A. (2017). Interpreting the Mechanism of APOE (p.Leu167del) Mutation in the Incidence of Familial Hypercholesterolemia; An In-silico Approach. Tocmj 11, 84–93. 10.2174/1874192401711010084 PubMed DOI PMC
Šobra J. (1970). Familiární Hypercholesterolemická Xanthomatosa. Praha: Avicenum.
Soutar A. K., Naoumova R. P. (2007). Mechanisms of Disease: Genetic Causes of Familial Hypercholesterolemia. Nat. Rev. Cardiol. 4, 214–225. 10.1038/ncpcardio0836 PubMed DOI
Sun D., Li S., Zhao X., Wu N.-Q., Zhu C.-G., Guo Y.-L., et al. (2018). Association between Lipoprotein (A) and Proprotein Convertase Substilisin/kexin Type 9 in Patients with Heterozygous Familial Hypercholesterolemia: A Case‐control Study. Metabolism 79, 33–41. 10.1016/j.metabol.2017.11.004 PubMed DOI
The FH Foundation (2021). FH Awareness Day. Available at: https://thefhfoundation.org/fh-awareness-day/about-fhad (Accessed September 13, 2021).
Trinder M., Li X., DeCastro M. L., Cermakova L., Sadananda S., Jackson L. M., et al. (2019). Risk of Premature Atherosclerotic Disease in Patients with Monogenic versus Polygenic Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 74, 512–522. 10.1016/j.jacc.2019.05.043 PubMed DOI
Vega G. L., Grundy S. M. (1986). In Vivo evidence for Reduced Binding of Low Density Lipoproteins to Receptors as a Cause of Primary Moderate Hypercholesterolemia. J. Clin. Invest. 78, 1410–1414. 10.1172/JCI112729 PubMed DOI PMC
Vohnout B., Rašlová K., Gašparovič J., Franeková J., Fábryová L., Belošovičová M., et al. (2003). Lipid Levels and Their Genetic Regulation in Patients with Familial Hypercholesterolemia and Familial Defective Apolipoprotein B-100: The MEDPED Slovakia Project. Atheroscler. Supplements 4, 3–5. 10.1016/S1567-5688(03)00023-0 PubMed DOI
Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J. A. (2020). Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 11, 574474. 10.3389/fgene.2020.574474 PubMed DOI PMC
Watts G. F., Chan D. C., Pang J., Ma L., Ying Q., Aggarwal S., et al. (2020). PCSK9 Inhibition with Alirocumab Increases the Catabolism of Lipoprotein(a) Particles in Statin-Treated Patients with Elevated Lipoprotein(a). Metabolism 107, 154221. 10.1016/j.metabol.2020.154221 PubMed DOI
Watts G. F., Ding P. Y., George P., Hagger M. S., Hu M., Lin J., et al. (2016). Translational Research for Improving the Care of Familial Hypercholesterolemia: The “Ten Countries Study” and beyond. Jat 23, 891–900. 10.5551/jat.35949 PubMed DOI PMC
Whitfield A. J., Barrett P. H. R., Van Bockxmeer F. M., Burnett J. R. (2004). Lipid Disorders and Mutations in the APOB Gene. Clin. Chem. 50, 1725–1732. 10.1373/clinchem.2004.038026 PubMed DOI