Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia

. 2021 Oct 12 ; 12 (10) : . [epub] 20211012

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34680994

Familial hypercholesterolemia (FH), is an autosomal dominant disorder caused by mutations in the LDLR, APOB, PCSK9, and APOE genes and is characterized by high plasma levels of total and low-density lipoprotein (LDL) cholesterol. Our study aimed to analyze the influences of two different therapies on a wide spectrum of plasma protein biomarkers of cardiovascular diseases. Plasma from FH patients under hypolipidemic therapy (N = 18; men = 8, age 55.4 ± 13.1 years) and patients under combined long-term LDL apheresis/hypolipidemic therapy (N = 14; men = 7; age 58.0 ± 13.6 years) were analyzed in our study. We measured a profile of 184 cardiovascular disease (CVD) associated proteins using a proximity extension assay (PEA). Hypolipidemic therapy significantly (all p < 0.01) influenced 10 plasma proteins (TM, DKK1, CCL3, CD4, PDGF subunit B, AGRP, IL18, THPO, and LOX1 decreased; ST2 increased). Under combined apheresis/hypolipidemic treatment, 18 plasma proteins (LDLR, PCSK9, MMP-3, GDF2, CTRC, SORT1, VEGFD, IL27, CCL24, and KIM1 decreased; OPN, COL1A1, KLK6, IL4RA, PLC, TNFR1, GLO1, and PTX3 increased) were significantly affected (all p < 0.006). Hypolipidemic treatment mainly affected biomarkers involved in vascular endothelial maintenance. Combined therapy influenced proteins that participate in cholesterol metabolism and inflammation.

Zobrazit více v PubMed

Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020;11:574474. doi: 10.3389/fgene.2020.574474. PubMed DOI PMC

Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., Defesche J.C., et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease. Eur. Heart J. 2013;34:3478–3490a. doi: 10.1093/eurheartj/eht273. PubMed DOI PMC

Cenarro A., Etxebarria A., De Castro-Orós I., Stef M., Bea A.M., Palacios L., Mateo-Gallego R., Benito-Vicente A., Ostolaza H., Tejedor T., et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J. Clin. Endocrinol. Metab. 2016;101:2113–2121. doi: 10.1210/jc.2015-3874. PubMed DOI

Creider J.C., Hegele R.A. Clinical evaluation for genetic and secondary causes of dyslipidemia. In: Ballantyne C.M., editor. Clinical Lipidology: A Companion to Braunwald’s Heart Disease. 2nd ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 128–134.

Rader D.J., Kathiresan S. Disorders of lipoprotein metabolism. In: Jameson J.L., Kasper D.L., Longo D.L., Fauci A.S., Hauser S.L., Loscalzo J., editors. Harrison’s Principles of Internal Medicine. 20th ed. McGraw Hill; New York, NY, USA: 2018. pp. 2889–2902.

Zhou Q., Liao J.K. Pleiotropic Effects of Statins-Basic Research and Clinical Perspectives. Circ. J. 2010;74:818–826. doi: 10.1253/circj.CJ-10-0110. PubMed DOI PMC

Bambauer R., Bambauer C., Lehmann B., Latza R., Schiel R. LDL-Apheresis: Technical and Clinical Aspects. Sci. World J. 2012;2012:314283. doi: 10.1100/2012/314283. PubMed DOI PMC

Blaha V., Bláha M., Lánská M., Solichová D., Krcmova L.K., Havel E., Vyroubal P., Zadak Z., Žák P., Sobotka L. Lipoprotein Apheresis in the Treatment of Dyslipidemia–the Czech Republic Experience. Physiol. Res. 2017;66:S91–S100. doi: 10.33549/physiolres.933584. PubMed DOI

Stefanutti C. Lipoprotein Apheresis and PCSK9-Inhibitors. Impact on Atherogenic Lipoproteins and Anti-Inflammatory Mediators in Familial Hypercholesterolaemia. Curr. Pharm. Des. 2019;24:3634–3637. doi: 10.2174/1381612824666181025115658. PubMed DOI

Dlouha D., Blaha M., Blaha V., Fatorova I., Hubacek J.A., Stavek P., Lanska V., Parikova A., Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017;30:128–134. doi: 10.1016/j.atherosclerosissup.2017.05.037. PubMed DOI

Blaha V., Blaha M., Solichová D., Krčmová L.K., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017;30:159–165. doi: 10.1016/j.atherosclerosissup.2017.05.002. PubMed DOI

Borberg H., Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006;34:41–49. doi: 10.1016/j.transci.2005.09.001. PubMed DOI

Yuasa Y., Osaki T., Makino H., Iwamoto N., Kishimoto I., Usami M., Minamino N., Harada-Shiba M. Proteomic Analysis of Proteins Eliminated by Low-Density Lipoprotein Apheresis. Ther. Apher. Dial. 2013;18:93–102. doi: 10.1111/1744-9987.12056. PubMed DOI

Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499. PubMed DOI

Solichova D., Melichar B., Blaha V., Klejna M., Vavrova J., Palicka V., Zadak Z. Biochemical profile and survival in nonagenarians. Clin. Biochem. 2001;34:563–569. doi: 10.1016/S0009-9120(01)00261-2. PubMed DOI

Kroon A.A., Hof M.A.V., Demacker P.N., Stalenhoef A.F. The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels. Atherosclerosis. 2000;152:519–526. doi: 10.1016/S0021-9150(00)00371-3. PubMed DOI

Assarsson E., Lundberg M., Holmquist G., Björkesten J., Thorsen S.B., Ekman D., Eriksson A., Dickens E.R., Ohlsson S., Edfeldt G., et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS ONE. 2014;9:e95192. doi: 10.1371/journal.pone.0095192. PubMed DOI PMC

Lundberg M., Eriksson A., Tran B., Assarsson E., Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102. doi: 10.1093/nar/gkr424. PubMed DOI PMC

Bandyopadhyay D., Ashish K., Hajra A., Qureshi A., Ghosh R.K. Cardiovascular Outcomes of PCSK9 Inhibitors: With Special Emphasis on Its Effect beyond LDL-Cholesterol Lowering. J. Lipids. 2018;2018:1–13. doi: 10.1155/2018/3179201. PubMed DOI PMC

Matarazzo S., Quitadamo M.C., Mango R., Ciccone S., Novelli G., Biocca S. Cholesterol-Lowering Drugs Inhibit Lectin-Like Oxidized Low-Density Lipoprotein-1 Receptor Function by Membrane Raft Disruption. Mol. Pharmacol. 2012;82:246–254. doi: 10.1124/mol.112.078915. PubMed DOI

Wong B.W., Wong N., Luo H., McManus B.M. Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. J. Hear. Lung Transplant. 2011;30:955–962. doi: 10.1016/j.healun.2011.04.007. PubMed DOI

Kjolby M., Nielsen M.S., Petersen C.M. Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Curr. Atheroscler. Rep. 2015;17:1–9. doi: 10.1007/s11883-015-0496-7. PubMed DOI

Liu W., Deng Z., Zeng Z., Fan J., Feng Y., Wang X., Cao D., Zhang B., Yang L., Liu B., et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis. 2020;7:235–244. doi: 10.1016/j.gendis.2019.08.003. PubMed DOI PMC

Zernecke A., Weber C. Chemokines in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2014;34:742–750. doi: 10.1161/ATVBAHA.113.301655. PubMed DOI

Hulthe J., McPheat W., Samnegård A., Tornvall P., Hamsten A., Eriksson P. Plasma interleukin (IL)-18 concentrations is elevated in patients with previous myocardial infarction and related to severity of coronary atherosclerosis independently of C-reactive protein and IL-6. Atherosclerosis. 2006;188:450–454. doi: 10.1016/j.atherosclerosis.2005.11.013. PubMed DOI

Miller A.M., Liew F.Y. The IL-33/ST2 pathway—A new therapeutic target in cardiovascular disease. Pharmacol. Ther. 2011;131:179–186. doi: 10.1016/j.pharmthera.2011.02.005. PubMed DOI

Gregersen I., Sandanger Ø., Askevold E.T., Sagen E.L., Yang K., Holm S., Pedersen T.M., Skjelland M., Krohg-Sørensen K., Hansen T.V., et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS ONE. 2017;12:e0188387. doi: 10.1371/journal.pone.0188387. PubMed DOI PMC

Mor A., Salto M.S., Katav A., Barashi N., Edelshtein V., Manetti M., Levi Y., George J., Matucci-Cerinic M. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019;78:1260–1268. doi: 10.1136/annrheumdis-2019-215119. PubMed DOI PMC

Bob F., Schiller A., Timar R., Lighezan D., Schiller O., Timar B., Bujor C.G., Munteanu M., Gadalean F., Mihaescu A., et al. Rapid decline of kidney function in diabetic kidney disease is associated with high soluble Klotho levels. Nefrología. 2019;39:250–257. doi: 10.1016/j.nefro.2018.08.004. PubMed DOI

Shiau M.-Y., Chuang P.-H., Yang C.-P., Hsiao C.-W., Chang S.-W., Chang K.-Y., Liu T.-M., Chen H.-W., Chuang C.-C., Yuan S.-Y., et al. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase. Sci. Rep. 2019;9:11974. doi: 10.1038/s41598-019-47908-9. PubMed DOI PMC

Ohmori R., Momiyama Y., Taniguchi H., Takahashi R., Kusuhara M., Nakamura H., Ohsuzu F. Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis. 2003;170:333–337. doi: 10.1016/S0021-9150(03)00298-3. PubMed DOI

Zhang L., Peppel K., Sivashanmugam P., Orman E.S., Brian L., Exum S.T., Freedman N.J. Expression of Tumor Necrosis Factor Receptor-1 in Arterial Wall Cells Promotes Atherosclerosis. Arter. Thromb. Vasc. Biol. 2007;27:1087–1094. doi: 10.1161/01.ATV.0000261548.49790.63. PubMed DOI PMC

Fornai F., Carrizzo A., Forte M., Ambrosio M., Damato A., Ferrucci M., Biagioni F., Busceti C.L., Puca A.A., Vecchione C. The inflammatory protein Pentraxin 3 in cardiovascular disease. Immun. Ageing. 2016;13:25. doi: 10.1186/s12979-016-0080-1. PubMed DOI PMC

Scarisbrick I.A., Epstein B., Cloud-Biebl B., Yoon H., Wu J., Renner D.N., Blaber S.I., Blaber M., Vandell A.G., Bryson A.L. Functional Role of Kallikrein 6 in Regulating Immune Cell Survival. PLoS ONE. 2011;6:e18376. doi: 10.1371/journal.pone.0018376. PubMed DOI PMC

Ii M., Losordo D.W. Statins and the endothelium. Vasc. Pharmacol. 2007;46:1–9. doi: 10.1016/j.vph.2006.06.012. PubMed DOI

Salomaa V., Matei C., Aleksic N., Sansores-Garcia L., Folsom A.R., Juneja H., Park E., Wu K.K. Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease; The ARIC study. Atherosclerosis. 2001;157:309–314. doi: 10.1016/S0021-9150(00)00729-2. PubMed DOI

Kim K.-I., Park K.U., Chun E.J., Choi S.I., Cho Y.-S., Youn T.-J., Cho G.-Y., Chae I.-H., Song J., Choi D.-J., et al. A Novel Biomarker of Coronary Atherosclerosis: Serum DKK1 Concentration Correlates with Coronary Artery Calcification and Atherosclerotic Plaques. J. Korean Med. Sci. 2011;26:1178–1184. doi: 10.3346/jkms.2011.26.9.1178. PubMed DOI PMC

Vaughan C.J., Murphy M., Buckley B.M. Statins do more than just lower cholesterol. Lancet. 1996;348:1079–1082. doi: 10.1016/S0140-6736(96)05190-2. PubMed DOI

Kunutsor S.K., Seidu S., Khunti K. Statins and secondary prevention of venous thromboembolism: Pooled analysis of published observational cohort studies. Eur. Heart J. 2017;38:1608–1612. doi: 10.1093/eurheartj/ehx107. PubMed DOI PMC

Şenaran H., Ileri M., AltinbaŞ A., Koşar A., Yetkin E., Öztürk M., Karaaslan Y., Kirazli S. Thrombopoietin and mean platelet volume in coronary artery disease. Clin. Cardiol. 2001;24:405–408. doi: 10.1002/clc.4960240511. PubMed DOI PMC

Li Y., Xian M., Yang B., Ying M., He Q. Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells. Stem Cell Rep. 2017;8:1617–1629. doi: 10.1016/j.stemcr.2017.04.025. PubMed DOI PMC

Hua X., Wang Y.-Y., Jia P., Xiong Q., Hu Y., Chang Y., Lai S., Xu Y., Zhao Z., Song J. Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020;18:1–16. doi: 10.1186/s12916-019-1469-4. PubMed DOI PMC

Segev A., Nili N., Strauss B.H. The role of perlecan in arterial injury and angiogenesis. Cardiovasc. Res. 2004;63:603–610. doi: 10.1016/j.cardiores.2004.03.028. PubMed DOI

Hanssen N.M., Stehouwer C.D., Schalkwijk C.G. Methylglyoxal and glyoxalase I in atherosclerosis. Biochem. Soc. Trans. 2014;42:443–449. doi: 10.1042/BST20140001. PubMed DOI

Yau S.W., Russo V.C., Clarke I., Dunshea F., A Werther G., Sabin M. IGFBP-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. Int. J. Obes. 2015;39:770–781. doi: 10.1038/ijo.2014.192. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-Term LDL-Apheresis Treatment and Dynamics of Circulating miRNAs in Patients with Severe Familial Hypercholesterolemia

. 2023 Aug 01 ; 14 (8) : . [epub] 20230801

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace