Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34680994
PubMed Central
PMC8535274
DOI
10.3390/genes12101599
PII: genes12101599
Knihovny.cz E-zdroje
- Klíčová slova
- apheresis, biomarker, familial hypercholesterolemia, protein, statins,
- MeSH
- anticholesteremika terapeutické užití MeSH
- biologické markery krev MeSH
- cholesterol krev metabolismus MeSH
- dospělí MeSH
- hyperlipoproteinemie typ II krev farmakoterapie genetika patologie MeSH
- kardiovaskulární nemoci krev farmakoterapie genetika patologie MeSH
- krevní proteiny klasifikace genetika izolace a purifikace MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- zánět krev genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anticholesteremika MeSH
- biologické markery MeSH
- cholesterol MeSH
- krevní proteiny MeSH
Familial hypercholesterolemia (FH), is an autosomal dominant disorder caused by mutations in the LDLR, APOB, PCSK9, and APOE genes and is characterized by high plasma levels of total and low-density lipoprotein (LDL) cholesterol. Our study aimed to analyze the influences of two different therapies on a wide spectrum of plasma protein biomarkers of cardiovascular diseases. Plasma from FH patients under hypolipidemic therapy (N = 18; men = 8, age 55.4 ± 13.1 years) and patients under combined long-term LDL apheresis/hypolipidemic therapy (N = 14; men = 7; age 58.0 ± 13.6 years) were analyzed in our study. We measured a profile of 184 cardiovascular disease (CVD) associated proteins using a proximity extension assay (PEA). Hypolipidemic therapy significantly (all p < 0.01) influenced 10 plasma proteins (TM, DKK1, CCL3, CD4, PDGF subunit B, AGRP, IL18, THPO, and LOX1 decreased; ST2 increased). Under combined apheresis/hypolipidemic treatment, 18 plasma proteins (LDLR, PCSK9, MMP-3, GDF2, CTRC, SORT1, VEGFD, IL27, CCL24, and KIM1 decreased; OPN, COL1A1, KLK6, IL4RA, PLC, TNFR1, GLO1, and PTX3 increased) were significantly affected (all p < 0.006). Hypolipidemic treatment mainly affected biomarkers involved in vascular endothelial maintenance. Combined therapy influenced proteins that participate in cholesterol metabolism and inflammation.
1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Laboratory of Gene Expression Institute of Biotechnology CAS BIOCEV 252 50 Vestec Czech Republic
Statistical Unit Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Zobrazit více v PubMed
Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020;11:574474. doi: 10.3389/fgene.2020.574474. PubMed DOI PMC
Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., Defesche J.C., et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease. Eur. Heart J. 2013;34:3478–3490a. doi: 10.1093/eurheartj/eht273. PubMed DOI PMC
Cenarro A., Etxebarria A., De Castro-Orós I., Stef M., Bea A.M., Palacios L., Mateo-Gallego R., Benito-Vicente A., Ostolaza H., Tejedor T., et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J. Clin. Endocrinol. Metab. 2016;101:2113–2121. doi: 10.1210/jc.2015-3874. PubMed DOI
Creider J.C., Hegele R.A. Clinical evaluation for genetic and secondary causes of dyslipidemia. In: Ballantyne C.M., editor. Clinical Lipidology: A Companion to Braunwald’s Heart Disease. 2nd ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 128–134.
Rader D.J., Kathiresan S. Disorders of lipoprotein metabolism. In: Jameson J.L., Kasper D.L., Longo D.L., Fauci A.S., Hauser S.L., Loscalzo J., editors. Harrison’s Principles of Internal Medicine. 20th ed. McGraw Hill; New York, NY, USA: 2018. pp. 2889–2902.
Zhou Q., Liao J.K. Pleiotropic Effects of Statins-Basic Research and Clinical Perspectives. Circ. J. 2010;74:818–826. doi: 10.1253/circj.CJ-10-0110. PubMed DOI PMC
Bambauer R., Bambauer C., Lehmann B., Latza R., Schiel R. LDL-Apheresis: Technical and Clinical Aspects. Sci. World J. 2012;2012:314283. doi: 10.1100/2012/314283. PubMed DOI PMC
Blaha V., Bláha M., Lánská M., Solichová D., Krcmova L.K., Havel E., Vyroubal P., Zadak Z., Žák P., Sobotka L. Lipoprotein Apheresis in the Treatment of Dyslipidemia–the Czech Republic Experience. Physiol. Res. 2017;66:S91–S100. doi: 10.33549/physiolres.933584. PubMed DOI
Stefanutti C. Lipoprotein Apheresis and PCSK9-Inhibitors. Impact on Atherogenic Lipoproteins and Anti-Inflammatory Mediators in Familial Hypercholesterolaemia. Curr. Pharm. Des. 2019;24:3634–3637. doi: 10.2174/1381612824666181025115658. PubMed DOI
Dlouha D., Blaha M., Blaha V., Fatorova I., Hubacek J.A., Stavek P., Lanska V., Parikova A., Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017;30:128–134. doi: 10.1016/j.atherosclerosissup.2017.05.037. PubMed DOI
Blaha V., Blaha M., Solichová D., Krčmová L.K., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017;30:159–165. doi: 10.1016/j.atherosclerosissup.2017.05.002. PubMed DOI
Borberg H., Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006;34:41–49. doi: 10.1016/j.transci.2005.09.001. PubMed DOI
Yuasa Y., Osaki T., Makino H., Iwamoto N., Kishimoto I., Usami M., Minamino N., Harada-Shiba M. Proteomic Analysis of Proteins Eliminated by Low-Density Lipoprotein Apheresis. Ther. Apher. Dial. 2013;18:93–102. doi: 10.1111/1744-9987.12056. PubMed DOI
Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499. PubMed DOI
Solichova D., Melichar B., Blaha V., Klejna M., Vavrova J., Palicka V., Zadak Z. Biochemical profile and survival in nonagenarians. Clin. Biochem. 2001;34:563–569. doi: 10.1016/S0009-9120(01)00261-2. PubMed DOI
Kroon A.A., Hof M.A.V., Demacker P.N., Stalenhoef A.F. The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels. Atherosclerosis. 2000;152:519–526. doi: 10.1016/S0021-9150(00)00371-3. PubMed DOI
Assarsson E., Lundberg M., Holmquist G., Björkesten J., Thorsen S.B., Ekman D., Eriksson A., Dickens E.R., Ohlsson S., Edfeldt G., et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS ONE. 2014;9:e95192. doi: 10.1371/journal.pone.0095192. PubMed DOI PMC
Lundberg M., Eriksson A., Tran B., Assarsson E., Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102. doi: 10.1093/nar/gkr424. PubMed DOI PMC
Bandyopadhyay D., Ashish K., Hajra A., Qureshi A., Ghosh R.K. Cardiovascular Outcomes of PCSK9 Inhibitors: With Special Emphasis on Its Effect beyond LDL-Cholesterol Lowering. J. Lipids. 2018;2018:1–13. doi: 10.1155/2018/3179201. PubMed DOI PMC
Matarazzo S., Quitadamo M.C., Mango R., Ciccone S., Novelli G., Biocca S. Cholesterol-Lowering Drugs Inhibit Lectin-Like Oxidized Low-Density Lipoprotein-1 Receptor Function by Membrane Raft Disruption. Mol. Pharmacol. 2012;82:246–254. doi: 10.1124/mol.112.078915. PubMed DOI
Wong B.W., Wong N., Luo H., McManus B.M. Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. J. Hear. Lung Transplant. 2011;30:955–962. doi: 10.1016/j.healun.2011.04.007. PubMed DOI
Kjolby M., Nielsen M.S., Petersen C.M. Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Curr. Atheroscler. Rep. 2015;17:1–9. doi: 10.1007/s11883-015-0496-7. PubMed DOI
Liu W., Deng Z., Zeng Z., Fan J., Feng Y., Wang X., Cao D., Zhang B., Yang L., Liu B., et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis. 2020;7:235–244. doi: 10.1016/j.gendis.2019.08.003. PubMed DOI PMC
Zernecke A., Weber C. Chemokines in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2014;34:742–750. doi: 10.1161/ATVBAHA.113.301655. PubMed DOI
Hulthe J., McPheat W., Samnegård A., Tornvall P., Hamsten A., Eriksson P. Plasma interleukin (IL)-18 concentrations is elevated in patients with previous myocardial infarction and related to severity of coronary atherosclerosis independently of C-reactive protein and IL-6. Atherosclerosis. 2006;188:450–454. doi: 10.1016/j.atherosclerosis.2005.11.013. PubMed DOI
Miller A.M., Liew F.Y. The IL-33/ST2 pathway—A new therapeutic target in cardiovascular disease. Pharmacol. Ther. 2011;131:179–186. doi: 10.1016/j.pharmthera.2011.02.005. PubMed DOI
Gregersen I., Sandanger Ø., Askevold E.T., Sagen E.L., Yang K., Holm S., Pedersen T.M., Skjelland M., Krohg-Sørensen K., Hansen T.V., et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS ONE. 2017;12:e0188387. doi: 10.1371/journal.pone.0188387. PubMed DOI PMC
Mor A., Salto M.S., Katav A., Barashi N., Edelshtein V., Manetti M., Levi Y., George J., Matucci-Cerinic M. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019;78:1260–1268. doi: 10.1136/annrheumdis-2019-215119. PubMed DOI PMC
Bob F., Schiller A., Timar R., Lighezan D., Schiller O., Timar B., Bujor C.G., Munteanu M., Gadalean F., Mihaescu A., et al. Rapid decline of kidney function in diabetic kidney disease is associated with high soluble Klotho levels. Nefrología. 2019;39:250–257. doi: 10.1016/j.nefro.2018.08.004. PubMed DOI
Shiau M.-Y., Chuang P.-H., Yang C.-P., Hsiao C.-W., Chang S.-W., Chang K.-Y., Liu T.-M., Chen H.-W., Chuang C.-C., Yuan S.-Y., et al. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase. Sci. Rep. 2019;9:11974. doi: 10.1038/s41598-019-47908-9. PubMed DOI PMC
Ohmori R., Momiyama Y., Taniguchi H., Takahashi R., Kusuhara M., Nakamura H., Ohsuzu F. Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis. 2003;170:333–337. doi: 10.1016/S0021-9150(03)00298-3. PubMed DOI
Zhang L., Peppel K., Sivashanmugam P., Orman E.S., Brian L., Exum S.T., Freedman N.J. Expression of Tumor Necrosis Factor Receptor-1 in Arterial Wall Cells Promotes Atherosclerosis. Arter. Thromb. Vasc. Biol. 2007;27:1087–1094. doi: 10.1161/01.ATV.0000261548.49790.63. PubMed DOI PMC
Fornai F., Carrizzo A., Forte M., Ambrosio M., Damato A., Ferrucci M., Biagioni F., Busceti C.L., Puca A.A., Vecchione C. The inflammatory protein Pentraxin 3 in cardiovascular disease. Immun. Ageing. 2016;13:25. doi: 10.1186/s12979-016-0080-1. PubMed DOI PMC
Scarisbrick I.A., Epstein B., Cloud-Biebl B., Yoon H., Wu J., Renner D.N., Blaber S.I., Blaber M., Vandell A.G., Bryson A.L. Functional Role of Kallikrein 6 in Regulating Immune Cell Survival. PLoS ONE. 2011;6:e18376. doi: 10.1371/journal.pone.0018376. PubMed DOI PMC
Ii M., Losordo D.W. Statins and the endothelium. Vasc. Pharmacol. 2007;46:1–9. doi: 10.1016/j.vph.2006.06.012. PubMed DOI
Salomaa V., Matei C., Aleksic N., Sansores-Garcia L., Folsom A.R., Juneja H., Park E., Wu K.K. Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease; The ARIC study. Atherosclerosis. 2001;157:309–314. doi: 10.1016/S0021-9150(00)00729-2. PubMed DOI
Kim K.-I., Park K.U., Chun E.J., Choi S.I., Cho Y.-S., Youn T.-J., Cho G.-Y., Chae I.-H., Song J., Choi D.-J., et al. A Novel Biomarker of Coronary Atherosclerosis: Serum DKK1 Concentration Correlates with Coronary Artery Calcification and Atherosclerotic Plaques. J. Korean Med. Sci. 2011;26:1178–1184. doi: 10.3346/jkms.2011.26.9.1178. PubMed DOI PMC
Vaughan C.J., Murphy M., Buckley B.M. Statins do more than just lower cholesterol. Lancet. 1996;348:1079–1082. doi: 10.1016/S0140-6736(96)05190-2. PubMed DOI
Kunutsor S.K., Seidu S., Khunti K. Statins and secondary prevention of venous thromboembolism: Pooled analysis of published observational cohort studies. Eur. Heart J. 2017;38:1608–1612. doi: 10.1093/eurheartj/ehx107. PubMed DOI PMC
Şenaran H., Ileri M., AltinbaŞ A., Koşar A., Yetkin E., Öztürk M., Karaaslan Y., Kirazli S. Thrombopoietin and mean platelet volume in coronary artery disease. Clin. Cardiol. 2001;24:405–408. doi: 10.1002/clc.4960240511. PubMed DOI PMC
Li Y., Xian M., Yang B., Ying M., He Q. Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells. Stem Cell Rep. 2017;8:1617–1629. doi: 10.1016/j.stemcr.2017.04.025. PubMed DOI PMC
Hua X., Wang Y.-Y., Jia P., Xiong Q., Hu Y., Chang Y., Lai S., Xu Y., Zhao Z., Song J. Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020;18:1–16. doi: 10.1186/s12916-019-1469-4. PubMed DOI PMC
Segev A., Nili N., Strauss B.H. The role of perlecan in arterial injury and angiogenesis. Cardiovasc. Res. 2004;63:603–610. doi: 10.1016/j.cardiores.2004.03.028. PubMed DOI
Hanssen N.M., Stehouwer C.D., Schalkwijk C.G. Methylglyoxal and glyoxalase I in atherosclerosis. Biochem. Soc. Trans. 2014;42:443–449. doi: 10.1042/BST20140001. PubMed DOI
Yau S.W., Russo V.C., Clarke I., Dunshea F., A Werther G., Sabin M. IGFBP-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. Int. J. Obes. 2015;39:770–781. doi: 10.1038/ijo.2014.192. PubMed DOI