Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26658551
PubMed Central
PMC4674872
DOI
10.1038/srep18029
PII: srep18029
Knihovny.cz E-zdroje
- MeSH
- Borrelia burgdorferi patogenita MeSH
- buněčné linie MeSH
- elektronová kryomikroskopie metody MeSH
- fluorescence MeSH
- fluorescenční mikroskopie metody MeSH
- interakce hostitele a patogenu fyziologie MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Correlative light and electron microscopy is an imaging technique that enables identification and targeting of fluorescently tagged structures with subsequent imaging at near-to-nanometer resolution. We established a novel correlative cryo-fluorescence microscopy and cryo-scanning electron microscopy workflow, which enables imaging of the studied object of interest very close to its natural state, devoid of artifacts caused for instance by slow chemical fixation. This system was tested by investigating the interaction of the zoonotic bacterium Borrelia burgdorferi with two mammalian cell lines of neural origin in order to broaden our knowledge about the cell-association mechanisms that precedes the entry of the bacteria into the cell. This method appears to be an unprecedentedly fast (<3 hours), straightforward, and reliable solution to study the finer details of pathogen-host cell interactions and provides important insights into the complex and dynamic relationship between a pathogen and a host.
Department of Virology Veterinary Research Institute Brno CZ 62100 Czech Republic
Faculty of Science Charles University Prague Viničná 1594 7 Praha CZ 12800 Czech Republic
Zobrazit více v PubMed
Steere A. C. Lyme disease. N Engl J Med 345, 115–125 (2001). PubMed
Livengood J. A. & Gilmore R. D. Jr. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect 8, 2832–2840 (2006). PubMed
Wu J., Weening E. H., Faske J. B., Höök M. & Skare J. T. Invasion of eukaryotic cells by Borrelia burgdorferi requires β(1) integrins and Src kinase activity. Infect Immun 79, 1338–1348, doi: 10.1128/IAI.01188-10 (2011). PubMed DOI PMC
Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413–418 (1873).
Polishchuk R. S., Polishchuk E. V. & Luini A. Visualizing live dynamics and ultrastructure of intracellular organelles with preembedding correlative light-electron microscopy. Methods Cell Biol 111, 21–35, doi: 10.1016/B978-0-12-416026-2.00002-9 (2012). PubMed DOI
Dubochet J. et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21, 129–228 (1988). PubMed
Dubochet J. & Sartori Blanc N. The cell in absence of aggregation artifacts. Micron 32, 91–99 (2001). PubMed
Schwartz C. L., Sarbash V. I., Ataullakhanov F. I., McIntosh J. R. & Nicastro D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227, 98–109 (2007). PubMed
Sartori A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135–145 (2007). PubMed
Rigort A., Villa E., Bäuerlein F. J., Engel B. D. & Plitzko J. M. Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. Methods Cell Biol 111, 259–281, doi: 10.1016/B978-0-12-416026-2.00014-5 (2012). PubMed DOI
Briegel A. et al. Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 69, 30–41, doi: 10.1111/j.1365-2958.2008.06219.x (2008). PubMed DOI PMC
Li W., Stein S. C., Gregor I. & Enderlein J. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Opt Express 23, 3770–3783, doi: 10.1364/OE.23.003770 (2015). PubMed DOI
Moerner W. E. & Orrit M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999). PubMed
Mao B. et al. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Biophys J 35, 543–546 (1981). PubMed PMC
van Driel L. F., Valentijn J. A., Valentijn K. M., Koning R. I. & Koster A. J. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur J Cell Biol 88, 669–684, doi: 10.1016/j.ejcb.2009.07.002 (2009). PubMed DOI
Dunham-Ems S. M. et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119, 3652–3665, doi: 10.1172/JCI39401 (2009). PubMed DOI PMC
Cinatl J. et al. Differentiation arrest in neuroblastoma cell culture. J Cancer Res Clin Oncol (Suppl.) 116, 9 (1990).
Klebe R. J. & Ruddle F. H. Neuroblastoma: cell culture analysis of a differentiating stem cell system. J Cell Biol 43, 69a (1969).
Ma Y., Sturrock A. & Weis J. J. Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect Immun 59, 671–678 (1991). PubMed PMC
Sultan S. Z. et al. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect Immun 81, 2012–2021, doi: 10.1128/IAI.01228-12 (2013). PubMed DOI PMC
Lemgruber L. et al. Nanoscopic localization of surface-exposed antigens of Borrelia burgdorferi. Microsc Microanal 21, 680–688, doi: 10.1017/S1431927615000318 (2015). PubMed DOI
Loussert C., Forestier C. L. & Humbel B. M. Correlative light and electron microscopy in parasite research. Methods Cell Biol 111, 59–73, doi: 10.1016/B978-0-12-416026-2.00004-2 (2012). PubMed DOI
Swulius M. T. et al. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem Biophys Res Commun 407, 650–655, doi: 10.1016/j.bbrc.2011.03.062 (2011). PubMed DOI PMC
Briegel A. et al. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. Elife 3, e02151, doi: 10.7554/eLife.02151 (2014). PubMed DOI PMC
Chang Y. W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11, 737–739, doi: 10.1038/nmeth.2961 (2014). PubMed DOI PMC
Koning R. I. et al. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces. Methods Cell Biol 124, 217–239, doi: 10.1016/B978-0-12-801075-4.00010-0 (2014). PubMed DOI
Lučič V., Rigort A. & Baumeister W. Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202, 407–419, doi: 10.1083/jcb.201304193 (2013). PubMed DOI PMC
Hoyt F. H., Hansen B. T. & Fischer E. R. Secondary sublimation removes ice contamination for improved visualization of structures by cryo-SEM. Microsc Microanal (Suppl. S2) 16, 976–977, doi: 10.1017/S1431927610057673 (2010). DOI
Agronskaia A. V. et al. Integrated fluorescence and transmission electron microscopy. J Struct Biol 164, 183–189, doi: 10.1016/j.jsb.2008.07.003 (2008). PubMed DOI
Radolf J. D., Caimano M. J., Stevenson B. & Hu L. T. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10, 87–99, doi: 10.1038/nrmicro2714 (2012). PubMed DOI PMC
Rosa P. A., Tilly K. & Stewart P. E. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3, 129–143 (2005). PubMed
Dunham-Ems S. M., Caimano M. J., Eggers C. H. & Radolf J. D. Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8, e1002532, doi: 10.1371/journal.ppat.1002532 (2012). PubMed DOI PMC
Moriarty T. J. et al. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4, e1000090, doi: 10.1371/journal.ppat.1000090 (2008). PubMed DOI PMC
Coburn J., Leong J. & Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 21, 372–379, doi: 10.1016/j.tim.2013.06.005 (2013). PubMed DOI PMC
Chmielewski T. & Tylewska-Wierzbanowska S. Interactions between Borrelia burgdorferi and mouse fibroblasts. Pol J Microbiol 59, 157–160 (2010). PubMed
Kaufmann R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett 14, 4171–4175, doi: 10.1021/nl501870p (2014). PubMed DOI PMC
Pathogenicity and virulence of Borrelia burgdorferi
Novel targets and strategies to combat borreliosis