Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study

. 2017 ; 8 () : 596. [epub] 20170411

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28443079

To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.

Zobrazit více v PubMed

Aberer E., Kersten A., Klade H., Poitschek C., Jurecka W. (1996). Heterogeneity of Borrelia burgdorferi in skin. Am. J. Dermatopathol. 18, 571–579. 10.1097/00000372-199612000-00004 PubMed DOI

Alban P. S., Johnson P. W., Nelson D. R. (2000). Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology 146, 119–127. 10.1099/00221287-146-1-119 PubMed DOI

Barbour A. G., Hayes S. F. (1986). Biology of Borrelia species. Microbiol. Rev. 50, 381–400. PubMed PMC

Berndtson K. (2013). Review of evidence for immune evasion and persistent infection in Lyme disease. Int. J. Gen. Med. 6, 291–306. 10.2147/IJGM.S44114 PubMed DOI PMC

Brorson Ø., Brorson S. H. (1997). Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection 25, 240–246. 10.1007/BF01713153 PubMed DOI

Brorson Ø., Brorson S. H. (1998a). A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS 106, 1131–1141. 10.1111/j.1699-0463.1998.tb00269.x PubMed DOI

Brorson Ø., Brorson S. H. (1998b). In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection 26, 144–150. 10.1007/BF02771839 PubMed DOI

Brorson O., Brorson S. H., Henriksen T. H., Skogen P. R., Schoyen R. (2001). Association between multiple sclerosis and cystic structures in cerebrospinal fluid. Infection 29, 315–319. 10.1007/s15010-001-9144-y PubMed DOI

Brorson Ø., Brorson S. H., Scythes J., MacAllister J., Wier A., Margulis L. (2009). Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc. Natl. Acad. Sci. U.S.A. 106, 18656–18661. 10.1073/pnas.0908236106 PubMed DOI PMC

Caimano M. J., Eggers C. H., Hazlett K. R. O., Radolf J. D. (2004). RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect. Immun. 72, 6433–6445. 10.1128/IAI.72.11.6433-6445.2004 PubMed DOI PMC

Chang Y. W., Chen S., Tocheva E. I., Treuner-Lange A., Löbach S., Søgaard-Andersen L., et al. . (2014). Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739. 10.1038/nmeth.2961 PubMed DOI PMC

de Taeye S. W., Kreuk L., van Dam A. P., Hovius J. W., Schuijt T. J. (2013). Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol. 29, 119–128. 10.1016/j.pt.2012.12.001 PubMed DOI

Drecktrah D., Lybecker M., Popitsch N., Rescheneder P., Hall L. S., Samuels D. S. (2015). Correction: The Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvation. PLoS Pathog. 11:e1005242. 10.1371/journal.ppat.1005242 PubMed DOI PMC

Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., et al. . (2009). Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 119, 3652–3665. 10.1172/JCI39401 PubMed DOI PMC

Feng J., Zhang S., Shi W., Zhang Y. (2016a). Ceftriaxone pulse dosing fails to eradicate biofilm-like microcolony Borrelia burgdorferi persisters which are sterilized by daptomycin/ doxycycline/cefuroxime without pulse dosing. Front. Microbiol. 7:1744 10.3389/fmicb.2016.01744 PubMed DOI PMC

Feng J., Shi W., Zhang S., Sullivan D., Auwaerter P. G., Zhang Y. (2016b). A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol. 7:743. 10.3389/fmicb.2016.00743 PubMed DOI PMC

Feng J., Weitner M., Shi W., Zhang S., Zhang Y. (2016c). Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime. Front. Microbiol. 7:62 10.3389/fmicb.2016.00062 PubMed DOI PMC

Goldstein S. F., Charon N. W., Kreiling J. A. (1994). Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. U.S.A. 91, 3433–3437. 10.1073/pnas.91.8.3433 PubMed DOI PMC

Golovchenko M., Vancová M., Clark K., Oliver J. H., Jr., Grubhoffer L., Rudenko N. (2016). A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasit Vectors 9:68. 10.1186/s13071-016-1353-4 PubMed DOI PMC

Gruntar I., Malovrh T., Murgia R., Cinco M. (2001). Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo. APMIS 109, 383–388. 10.1034/j.1600-0463.2001.090507.x PubMed DOI

Hulínská D., Barták P., Hercogová J., Hancil J., Basta J., Schramlova J. (1994). Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients. Zentralbl. Bakteriol. 280, 348–359. 10.1016/S0934-8840(11)80597-9 PubMed DOI

Hulínská D., Jirous J., Valesova M., Herzogova J. (1989). Ultrastructure of Borrelia burgdorferi in tissues of patients with Lyme disease. J. Basic Microbiol. 29, 73–83. 10.1002/jobm.3620290203 PubMed DOI

Janeway C. A., Jr., Travers P., Walport M., Shlomchik M. J. (eds.). (2001). The complement system and innate immunity, in Immunobiology: The Immune System in Health and Disease. 5th Edn. (New York, NY: Garland Science; ).

Kaufmann R., Hagen C., Grünewald K. (2014b). Fluorescence cryo-microscopy: current challenges and prospects. Curr. Opin. Chem. Biol. 20, 86–91. 10.1016/j.cbpa.2014.05.007 PubMed DOI PMC

Kaufmann R., Schellenberger P., Seiradake E., Dobbie I. M., Jones E. Y., Davis I., et al. . (2014a). Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175. 10.1021/nl501870p PubMed DOI PMC

Kersten A., Poitschek C., Rauch S., Aberer E. (1995). Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob. Agents Chemother. 39, 1127–1133. 10.1128/AAC.39.5.1127 PubMed DOI PMC

Kurtenbach K., Sewell H. S., Ogden N. H., Randolph S. E., Nuttall P. A. (1998). Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun. 66, 1248–1251. PubMed PMC

Lantos P. M., Auwaerter P. G., Wormser G. P. (2014). A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin. Infect Dis. 58, 663–671. 10.1093/cid/cit810 PubMed DOI PMC

Lehtinen J., Nuutila J., Lilius E. M. (2004). Green fluorescent protein–propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytometry A 60A, 165–172. 10.1002/cyto.a.20026 PubMed DOI

Li W., Stein S. C., Gregor I., Enderlein J. (2015). Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Opt. Express 23, 3770–3783. 10.1364/OE.23.003770 PubMed DOI

Lowder M., Unge A., Maraha N., Jansson J. K., Swiggett J., Oliver J. D. (2000). Effect of starvation and the viable-but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Appl. Environ. Microbiol. 66, 3160–3165. 10.1128/AEM.66.8.3160-3165.2000 PubMed DOI PMC

Meriläinen L., Herranen A., Schwarzbach A., Gilbert L. (2015). Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology 161, 516–527. 10.1099/mic.0.000027 PubMed DOI PMC

Miklossy J., Kasas S., Zurn A. D., McCall S., Yu S., McGeer P. L. (2008). Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme borreliosis. J. Neuroinflammation 5:40 10.1186/1742-2094-5-40 PubMed DOI PMC

Motaleb M. A., Corum L., Bono J. L., Elias A. F., Rosa P., Samuels D. S., et al. . (2000). Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl. Acad. Sci. U.S.A. 97, 10899–10904. 10.1073/pnas.200221797 PubMed DOI PMC

Murgia R., Cinco M. (2004). Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS 112, 57–62. 10.1111/j.1600-0463.2004.apm1120110.x PubMed DOI

Mursic V. P., Wanner G., Reinhardt S., Wilske B., Busch U., Marget W. (1996). Formation and cultivation of Borrelia burgdorferi spheroplast-L-form variants. Infection 24, 218–226. 10.1007/BF01781096 PubMed DOI

Nebesářová J., Wandrol P., Vancová M. (2016). Novel method of simultaneous multiple immunogold localization on resin sections in high resolution scanning electron microscopy. Nanomedicine 12, 105–108. 10.1016/j.nano.2015.09.008 PubMed DOI

Rudenko N., Golovchenko M., Vancova M., Clark K., Grubhoffer L., Oliver J. H., et al. (2016). Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis. Clin. Microbiol. Infect 22, e9–e15. 10.1016/j.cmi.2015.11.009 PubMed DOI

Sapi E., Balasubramanian K., Poruri A., Maghsoudlou J. S., Socarras K. M., Timmaraju A. V., et al. . (2016). Evidence of in vivo existence of Borrelia biofilm in borrelial lymphocytomas. Eur. J. Microbiol. Immunol. 6, 9–24. 10.1556/1886.2015.00049 PubMed DOI PMC

Schorb M., Briggs J. A. (2014). Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 143, 24–32. 10.1016/j.ultramic.2013.10.015 PubMed DOI PMC

Schwartz C. L., Sarbash V. I., Ataullakhanov F. I., McIntosh J. R., Nicastro D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109. 10.1111/j.1365-2818.2007.01794.x PubMed DOI

Stricker R. B., Johnson L. (2011). Lyme disease: the next decade. Infect Drug Resist. 4, 1–9. 10.2147/IDR.S15653 PubMed DOI PMC

Strnad M., Elsterová J., Schrenková J., Vancová M., Rego R. O. M., Grubhoffer L., et al. . (2015). Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci. Rep. 5:e18029. 10.1038/srep18029 PubMed DOI PMC

Sultan S. Z., Manne A., Stewart P. E., Bestor A., Rosa P. A., Charon N. W., et al. . (2013). Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect. Immun. 81, 2012–2021. 10.1128/IAI.01228-12 PubMed DOI PMC

Tichá L., Golovchenko M., Oliver J. H., Jr., Grubhoffer L., Rudenko N. (2016). Sensitivity of Lyme borreliosis spirochetes to serum complement of regular zoo animals: potential reservoir competence of some exotic vertebrates. Vector Borne Zoonotic Dis. 16, 13–19. 10.1089/vbz.2015.1847 PubMed DOI

Vancová M., Nebesářová J. (2015). Correlative fluorescence and scanning electron microscopy of labelled core fucosylated glycans using cryosections mounted on carbon-patterned glass slides. PLoS ONE 10:e0145034. 10.1371/journal.pone.0145034. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...