Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26690057
PubMed Central
PMC4699470
DOI
10.1371/journal.pone.0145034
PII: PONE-D-15-45125
Knihovny.cz E-zdroje
- MeSH
- barvení a značení metody MeSH
- elektronová kryomikroskopie přístrojové vybavení metody MeSH
- fluorescenční mikroskopie přístrojové vybavení metody MeSH
- klíště * metabolismus ultrastruktura MeSH
- mikroskopie elektronová rastrovací přístrojové vybavení metody MeSH
- proteiny členovců metabolismus MeSH
- proteoglykany metabolismus MeSH
- sklo MeSH
- slinné proteiny a peptidy metabolismus MeSH
- slinné žlázy * metabolismus ultrastruktura MeSH
- uhlík MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny členovců MeSH
- proteoglykany MeSH
- slinné proteiny a peptidy MeSH
- uhlík MeSH
The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in α1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with α1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus. Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides. We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes.
Faculty of Science Charles University Prague Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiol. 2006; 16: 158R–184R. PubMed
Staudacher E, Altmann F, Wilson IB, März L. Fucose in N-glycans: from plant to man. Biochim Biophys Acta. 1999; 1473: 216–236. PubMed
Dupejová J, Štěrba J, Vancová M, Grubhoffer L. Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization. Parasit Vectors. 2011; 4: 4 10.1186/1756-3305-4-4 PubMed DOI PMC
Man P, Kovář V, Štěrba J, Strohalm M, Kavan D, Kopáček P, et al. Deciphering Dorin M glycosylation by mass spectrometry. Eur J Mass Spectrom. 2008; 14: 345–354. PubMed
Štěrba J, Vancová M, Štěrbová J, Bell-Sakyi L, Grubhoffer L. The majority of sialylated glycoproteins in adult Ixodes ricinus ticks originate in the host, not the tick. Carbohydr Res. 2014; 389: 93–99. 10.1016/j.carres.2014.02.017 PubMed DOI
Altmann F. The role of protein glycosylation in allergy. Int Arch Allergy Immunol. 2007; 142: 99–115. PubMed
Van Die I, Gomord V, Kooyman FN, van den Berg TK, Cummings RD, Vervelde L. Core alpha 1—>3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett 1999; 463: 189–193. PubMed
Binnington KC. Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus . Int J Parasitol. 1978; 8: 97–115. PubMed
Albrecht RM, Meyer DA, Olorundare OE. High resolution for correlative microscopy In: Schatten H., editor. Scanning Electron Microscopy for the Life Sciences. Cambridge University Press; 2012. pp. 83–98.
Hermann R, Walther P, Mueller M. Immunogold labelling in scanning electron microscopy. Histochem Cell Biol. 1996; 106: 31–39. PubMed
Vancová M, Šlouf M, Langhans J, Pavlová E, Nebesářová J. Application of colloidal palladium nanoparticles for labeling in electron microscopy. Microsc Microanal. 2011; 17: 810–816. 10.1017/S1431927611000547 PubMed DOI
Liv N, Zonnevylle AC, Narvaez AC, Effting APJ, Voorneveld PW, Lucas MS, et al. Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLOS ONE. 2013; 8: e55707 10.1371/journal.pone.0055707 PubMed DOI PMC
Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2004; 2: e329 PubMed PMC
Morandi V, Merli PG. Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. J Appl Phys. 2007; 101: 114917 10.1063/1.2745333 DOI
Seiter J, Müller E, Blank H, Gehrke H, Marko D, Gerthsen D. Backscattered electron SEM imaging of cells and determination of the information depth. J Microsc. 2014; 254: 75–83. 10.1111/jmi.12120 PubMed DOI
Wandrol P, Vancová M, Nebesářová J. New method for multiple immunodetection on resin ultrathin section in the field emission scanning electron microscope. Microsc Microanal. 2014; 20: suppl. 3: 1266.
Nebesářová J, Wandrol P, Vancová M. Novel method of simultaneous multiple immunogold localization on resin sections in high resolution scanning electron microscopy. Nanomed Nanotech Biol Med. 2015. October 22 pii: S1549-9634(15)00186-0. 10.1016/j.nano.2015.09.008 PubMed DOI
Liou W, Geuze HJ, Slot JW. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996; 106: 41–58. PubMed
Fawcett DW, Doxsey S, Büscher G. Salivary gland of the tick vector (R. appendiculatus) of East Coast fever. II. Cellular basis for fluid secretion in the type III acinus. Tissue Cell. 1981; 13: 231–253. PubMed
Kaufman WR and Sauer JR. Ion and water balance in feeding ticks: mechanism of tick excretion In: Obenchain FD, Galun RR, editors. Physiology of ticks. Oxford: Pergamon Press; 1982. pp. 213–243.
Intra J, Concetta V, De Caro D, Perotti ME, Pasini ME. Drosophila sperm surface alpha-l-fucosidase interacts with the egg coats through its core fucose residues. Insect Biochem Mol Biol. 2015; 63: 133–143. 10.1016/j.ibmb.2015.06.011 PubMed DOI
Pedra JH, Narasimhan S, Rendić D, DePonte K, Bell-Sakyi L, Wilson IB, et al. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum . Cell Microbiol. 2010; 12: 1222–1234. 10.1111/j.1462-5822.2010.01464.x PubMed DOI PMC
Tokuyasu KT. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973; 57: 551–565. PubMed PMC
Tokuyasu KT. A study of positive staining of ultrathin frozen cryosections. J Ultrastruct Res 1978; 63: 287–307. PubMed
Kopek BG, Shtengel G, Grimm JB, Clayton DA, Hess HF. Correlative photoactivated localization and scanning electron microscopy. PLOS ONE. 2013; 8: e77209 10.1371/journal.pone.0077209 PubMed DOI PMC
Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. PNAS. 2012; 109: 6136–6141. 10.1073/pnas.1121558109 PubMed DOI PMC
Brown E, Mantell J, Carter D, Tilly G, Verkade P. Studying intracellular transport using high-pressure freezing and Correlative Light Electron Microscopy. Semin Dev Cell Biol. 2009; 20: 910–919. PubMed
Watanabe S, Jorgensen EM. Visualizing proteins in electron micrographs at nanometer resolution. Correlative light and electron microscopy In: Muller-Reichert T, Verkade PH, editors. Methods in Cell Biology. vol. 111 Amsterdam: Elsevier; 2012. pp. 283–305. PubMed PMC
Benedetti L, Sogne E, Rodighiero S, Marchesi D, Milani P, Francolini M. Customized patterned substrates for highly versatile correlative light-scanning electron microscopy. Sci Rep. 2014; 4: 7033 10.1038/srep07033 PubMed DOI PMC
Zonnevylle AC, Van Tol RF, Liv N, Narvaez AC, Effting AP, Kruit P, et al. Integration of a high-NA light microscope in a scanning electron microscope. J Microsc. 2013; 252: 58–70. 10.1111/jmi.12071 PubMed DOI
Nisman R, Dellaire G, Ren Y, Li R, Bazett-Jones DP. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem. 2004; 52: 13–18. PubMed
Reimer L. Scanning Electron Microscopy Springer Series in Optical Sciences. 2nd ed. vol. 45 Heidelberg: Springer; 1998.
Erlandsen SL, Macechko PT, Frethem C. High resolution backscatter electron (BSE) imaging of immunogold with in-lens and below-the lens field emission scanning electron microscopes. Scanning Microsc. 1999; 13: 43–54.
A bite so sweet: the glycobiology interface of tick-host-pathogen interactions