Exploring Tick-Borne Encephalitis Virus-Host Cell Interactions Using Electron Tomography: Methodologies and Protocols
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Electron tomography, Tick-borne encephalitis virus, Transmission electron microscopy,
- MeSH
- buněčné linie MeSH
- interakce hostitele a patogenu * MeSH
- klíšťová encefalitida * virologie MeSH
- lidé MeSH
- mrazová substituce MeSH
- replikace viru MeSH
- tomografie elektronová * metody MeSH
- viry klíšťové encefalitidy * fyziologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Electron microscopy stands as a cornerstone in unraveling the intricate dynamics of viral infections, with its high-resolution capabilities offering invaluable insights into the interactions between viruses and the infected cells. Here, we present a comprehensive methodology designed to explore the three-dimensional interactions specifically between tick-borne encephalitis virus (TBEV) and host cells. This approach allows to study all stages of viral lifecycle, including replication, budding, maturation, and host cell defense mechanisms. The methodology encompasses a range of techniques, commencing with sample preparation using high-pressure freezing, followed by freeze substitution, epoxy embedding, and ultrathin sectioning. Subsequently, we employ electron tomography in conjunction with image processing and analysis techniques to unravel the intricate nuances of TBEV-host cell interactions.
Faculty of Science Masaryk University Brno Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Füzik T, Formanová P, Růžek D et al (2018) Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 9(1):436 PubMed DOI PMC
Pulkkinen LIA, Barrass SV, Domanska A et al (2022) Molecular organisation of tick-borne encephalitis virus. Viruses 14(4):792 PubMed DOI PMC
Miorin L, Romero-Brey I, Maiuri PS et al (2013) Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J Virol 87(11):6469–6481 PubMed DOI PMC
Yau WL, Nguyen-Dinh V, Larsson E et al (2019) Model system for the formation of tick-borne encephalitis virus replication compartments without viral RNA replication. J Virol 93(18):e00292. https://doi.org/10.1128/jvi.00292-19 PubMed DOI PMC
Palus M, Bílý T, Elsterová J et al (2014) Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol 95(Pt 11):2411–2426 PubMed DOI
Bílý T, Palus M, Eyer L et al (2015) Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci Rep 5(1):10745 PubMed DOI PMC
Bárcena M, Koster AJ (2009) Electron tomography in life science. Semin Cell Dev Biol 20(8):920–930 PubMed DOI PMC
Kaurov I, Vancová M, Schimanski B et al (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol 28(21):3393–3407 PubMed DOI
Rachel R, Walther P, Maaßen C et al (2020) Dual-axis STEM tomography at 200 kV: setup, performance, limitations. J Struct Biol 211:107551 PubMed DOI
Luther PK, Lawrence MC, Crowther RA (1988) A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24(1):7–18 PubMed DOI
Jésior JC (1986) How to avoid compression II. The influence of sectioning conditions. J Ultrastruct Mol Struct Res 95(1):210–217 DOI
Skoupy R, Nebesarova J, Slouf M et al (2019) Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy 202:44–50 PubMed DOI
Reipert S, Wiche G (2008) High-pressure freezing and low-temperature fixation of cell monolayers grown on sapphire coverslips. Methods Cell Biol 88:165–180 PubMed DOI
Jésior JC (1989) Use of low-angle diamond knives leads to improved ultrastructural preservation of ultrathin sections. Scann Microsc Suppl 3:147–153
Kolotuev I, Bumbarger D, Labouesse M et al (2012) Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms. Methods Cell Biol 111:203–222 PubMed DOI
Rodenburg JM (2004) Understanding transmission electron microscope alignment: a tutorial. Microsc Anal 18(3):3
Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152(1):36–51 PubMed DOI
Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197(2):102–113 PubMed DOI
Rahman MM, Chang IY, Cohen-Fix O et al (2021) A workflow for high-pressure freezing and freeze substitution of the Caenorhabditis elegans embryo for ultrastructural analysis by conventional and volume electron microscopy. Bio Protoc 11(7):e3981 PubMed DOI PMC
Vancová M, Nebesářová J (2015) Correlative fluorescence and scanning electron microscopy of labelled core fucosylated glycans using cryosections mounted on carbon-patterned glass slides. PLoS One 10(12):e0145034 PubMed DOI PMC
Wild P, Schraner EM, Adler H et al (2001) Enhanced resolution of membranes in cultured cells by cryoimmobilization and freeze-substitution. Microsc Res Tech 53(4):313–321 PubMed DOI
McEwen BF, Renken C, Marko M et al (2008) Principles and practice in electron tomography. Methods Cell Biol 89:129–168 PubMed DOI
He W, Cowin P, Stokes DL (2003) Untangling Desmosomal knots with electron tomography. Science 302(5642):109–113 PubMed DOI
Heidari Mezerji H, Van den Broek W, Bals S (2011) A practical method to determine the effective resolution in incoherent experimental electron tomography. Ultramicroscopy 111(5):330–336 PubMed DOI
Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120(3):343–352 PubMed DOI