Tailocins are nano-scale phage tail-like protein complexes that can mediate antagonistic interactions between closely related bacterial species. While the capacity to produce R-type tailocin was found widely across Gammaproteobacteria, the production of F-type tailocins seems comparatively rare. In this study, we examined the freshwater isolate, Pragia fontium 24613, which can produce both R- and F-type tailocins. We investigated their inhibition spectrum, focusing on clinically relevant enterobacteria, and identified the associated tailocin gene cluster. Transmission electron microscopy confirmed that inactivation of the tape measure protein within the tailocin cluster disrupted R-tailocin production. Comparative analysis of Budviciaceae gene clusters showed high conservation of R-type tailocin genes, whereas F-type tailocin genes were found in only a few species, with little conservation. Our findings indicate a high prevalence of bacteriocin production among underexplored Enterobacteriales species. Detected tailocins showed potential as antimicrobials targeting clinically significant pathogens.
Many photosensitive substances suitable for photodynamic therapy (PDT) have limited applications due to their insufficient solubility in polar solvents. Our research overcomes this challenge by means of nanotechnology in order to transform hydrophobic compounds into stable aqueous solutions, enabling them to use their full potential and unique properties in cancer therapy. In this study, the novel nano-composite cGQDs-PEG-curcumin was developed to overcome the insolubility of curcumin in water and its extraordinary efficacy in PDT was evaluated. Complex characterization was performed using high-resolution transmission electron microscopy (HR-TEM), FTIR, and UV-Vis spectroscopy. Further analysis involved fluorescence lifetime imaging (FLIM), and its cellular localization was mapped with confocal microscopy. In order to evaluate PDT effectiveness, cells treated with cGQDs-PEG-curcumin were irradiated with 5 J/cm2 of 414 nm light. After irradiation, cell viability assay, scanning electron microscopy (SEM), reactive oxygen species (ROS) detection, comet assay, and γH2AX-based DNA double-strand breaks (DSBs) detection were assessed and revealed a remarkable ability of the nano-composite to induce DNA damage after irradiation without ROS production. Our findings highlight the potential of cGQDs-PEG-curcumin as a cutting-edge PDT agent, capable of disrupting cell membrane and nucleolar integrity and impairing ribosomal synthesis, which is crucial for proliferating tumour cells.
- MeSH
- Cell Nucleolus * drug effects metabolism MeSH
- DNA Breaks, Double-Stranded drug effects MeSH
- Photochemotherapy * methods MeSH
- Photosensitizing Agents * pharmacology MeSH
- Graphite * chemistry pharmacology MeSH
- Curcumin * pharmacology chemistry MeSH
- Quantum Dots * chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Neoplasms * drug therapy MeSH
- Polyethylene Glycols * chemistry pharmacology MeSH
- DNA Damage * drug effects MeSH
- Reactive Oxygen Species metabolism MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
There is increasing pressure on meat producers worldwide due to the need for higher yields and improved meat quality. This is why anabolic androgenic steroids (AAS) have been widely used in most countries, due to their ability to accelerate animal muscle growth. However, out of concern for their side effects, EU states have banned their use and implemented control mechanisms. But they are reaching their limits, and therefore, it is necessary to look for new ways and investigate the mechanism of action of AAS on muscle tissue. This study replicated the administration of banned AAS (testosterone, nandrolone and their combination) and observed their effect on pig muscle. The pig model was purposely chosen for the study, as no such research has been carried out on this species. At the same time, pork is one of the most consumed meats in Europe. It focused on histological changes in muscle structure, specifically the size of muscle fibres and the number of satellite cells per muscle fibre. Furthermore, ultrastructural changes in muscle fibres, the diameter of myofibrils, the number of myofibrils per area, the distance between myofibrils and the size of sarcomeres were examined. The results using the techniques of histology, fluorescent labelling and transmission electron microscopy showed that, after the application of AAS, there is an increase in the diameter of muscle fibres, an increase in the diameter of myofibrils, a decrease in the number of myofibrils per surface area and, in the case of testosterone, an increase in the distance between myofibrils and an increase in the length of sarcomeres. There was also a significant increase in the number of satellite cells per muscle fibre. The detected statistically significant differences between control and experimental groups provide evidence that selected histological parameters could be additional mechanisms for detecting the presence of AAS in pork meat in the future.
- MeSH
- Anabolic Agents * pharmacology MeSH
- Muscle Fibers, Skeletal * drug effects ultrastructure MeSH
- Muscle, Skeletal drug effects anatomy & histology ultrastructure MeSH
- Myofibrils * drug effects ultrastructure MeSH
- Nandrolone * pharmacology MeSH
- Swine anatomy & histology MeSH
- Sarcomeres drug effects ultrastructure MeSH
- Satellite Cells, Skeletal Muscle drug effects ultrastructure MeSH
- Testosterone * pharmacology MeSH
- Microscopy, Electron, Transmission veterinary MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Severe acute pancreatitis (SAP) is associated with metabolic disorders, hypocalcemia, and multiple organ failure. The objective of this study was to investigate changes in thyroid ultrastructure and function in rats with SAP and to provide a theoretical basis for the clinical treatment of thyroid injury in patients with SAP. 64 male SPF Wistar rats were randomly divided into the SAP group and the control group. Pancreatic enzymatic indicators and thyroid hormones were detected, pathology scores were evaluated, and morphological changes were observed under light microscopy and transmission electron microscopy (TEM) in both groups. The serum levels of triiodothyronine (T3), tetraiodothyronine (T4) and Ca2+ were significantly lower in the SAP group than in the control group (P<0.05), whereas the level of calcitonin (CT) was significantly higher than that in the control group (P<0.05). The thyroid structure (pathology and electron microscopy) of the SAP rats was seriously damaged and worsened over time. SAP can cause thyroid injury through a variety of mechanisms, which can also retroact to pancreatitis to aggravate the inflammatory response. This study may have theoretical significance for basic research on SAP. Key words Severe acute pancreatitis, Thyroid, Structure and functional changes, Transmission electron microscopy.
- MeSH
- Acute Disease MeSH
- Thyroid Hormones blood MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Pancreatitis * pathology MeSH
- Rats, Wistar * MeSH
- Thyroid Gland * pathology ultrastructure metabolism MeSH
- Severity of Illness Index MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
While two-dimensional (2D) cell cultures, such as Caco-2 and Madin-Darby canine kidney (MDCK) cells are widely used in a variety of biological models, these two-dimensional in vitro systems present inherent limitations in replicating the complexities of in vivo biology. Recent progress in three-dimensional organoid technology has the potential to address these limitations. In this study, the characteristics of conventional 2D cell culture systems were compared to those of canine intestinal organoids (enteroids, ENT, and colonoids, COL). Light microscopy and transmission electron microscopy were employed to evaluate the microanatomy of ENT, COL, Caco-2, and MDCK cell monolayers, while transepithelial electrical resistance (TEER) values were measured to assess monolayer integrity. The TEER values of canine ENT monolayers more closely approximated reported TEER values for human small intestines compared to Caco-2 and MDCK monolayers. Additionally, canine ENT demonstrated greater monolayer stability than Caco-2 and MDCK cells. Notably, while all systems displayed desmosomes, canine ENT and COL exclusively produced mucus. These findings highlight the potential of the canine organoid system as a more biologically relevant model for in vitro studies, addressing the limitations of conventional 2D cell culture systems.
- Publication type
- Journal Article MeSH
In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
This study aimed to establish a rat model of chronic wounds to observe the effects of hyperbaric oxygen (HBO) on chronic wound repair and pyroptosis and explore the potential role of pyroptosis in the pathogenesis of chronic wounds. Sprague-Dawley (SD) rats were randomly divided into acute wound group (control group), chronic wound group (model group), chronic wound + HBO treatment group (HBO group), and chronic wound + VX-765 (IL-converting enzyme/Caspase-1 inhibitor) treatment group (VX-765 group). After 7 days of respective interventions, the wound healing status was observed, and wound tissue specimens were collected. Hematoxylin and eosin (HE) staining was used to observe the pathological changes in wound tissues. Transmission electron microscopy was used to observe the changes in cellular ultrastructure. Immunofluorescence was used to observe the expression and localization of vascular endothelial growth factor A (VEGF-A) and the N-terminal domain of gasdermin D (GSDMD-N). Western blot was conducted to detect the expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteine-requiring aspartate protease-1 (Caspase-1), VEGF-A, and GSDMD-N proteins in wound tissues. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of NLRP3, Caspase-1, and GSDMD genes. Enzyme-linked immunosorbent assay (ELISA) was performed to observe the expression of the inflammatory cytokines interleukin-1 beta (IL-1beta) and IL-18. The results showed that the HBO group had a faster wound healing rate and better pathology improvement compared to the model group. The expression level of VEGF-A was higher in the HBO group compared to the model group, while the expression levels of NLRP3, Caspase-1, GSDMD, IL-1beta, and IL-18 were lower than those in the model group. HBO can effectively promote the healing of chronic wounds, and the regulation of pyroptosis may be one of its mechanisms of action. Keywords: Hyperbaric oxygen, Pyroptosis, Chronic wounds, Inflammatory.
- MeSH
- Chronic Disease MeSH
- Gasdermins MeSH
- Wound Healing * physiology MeSH
- Hyperbaric Oxygenation * methods MeSH
- Rats MeSH
- Rats, Sprague-Dawley * MeSH
- NLR Family, Pyrin Domain-Containing 3 Protein metabolism MeSH
- Phosphate-Binding Proteins metabolism MeSH
- Pyroptosis * physiology MeSH
- Vascular Endothelial Growth Factor A metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
STUDY QUESTION: Can oocyte functionality be assessed by observing changes in their intracytoplasmic lipid droplets (LDs) profiles? SUMMARY ANSWER: Lipid profile changes can reliably be detected in human oocytes; lipid changes are linked with maternal age and impaired developmental competence in a mouse model. WHAT IS KNOWN ALREADY: In all cellular components, lipid damage is the earliest manifestation of oxidative stress (OS), which leads to a cascade of negative consequences for organelles and DNA. Lipid damage is marked by the accumulation of LDs. We hypothesized that impaired oocyte functionality resulting from aging and associated OS could be assessed by changes in LDs profile, hereafter called lipid fingerprint (LF). STUDY DESIGN, SIZE, DURATION: To investigate if it is possible to detect differences in oocyte LF, we subjected human GV-stage oocytes to spectroscopic examinations. For this, a total of 48 oocytes derived from 26 young healthy women (under 33 years of age) with no history of infertility, enrolled in an oocyte donation program, were analyzed. Furthermore, 30 GV human oocytes from 12 women were analyzed by transmission electron microscopy (TEM). To evaluate the effect of oocytes' lipid profile changes on embryo development, a total of 52 C57BL/6 wild-type mice and 125 Gnpat+/- mice were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human oocytes were assessed by label-free cell imaging via coherent anti-Stokes Raman spectroscopy (CARS). Further confirmation of LF changes was conducted using spontaneous Raman followed by Fourier transform infrared (FTIR) spectroscopies and TEM. Additionally, to evaluate whether LF changes are associated with developmental competence, mouse oocytes and blastocysts were evaluated using TEM and the lipid dyes BODIPY and Nile Red. Mouse embryonic exosomes were evaluated using flow cytometry, FTIR and FT-Raman spectroscopies. MAIN RESULTS AND THE ROLE OF CHANCE: Here we demonstrated progressive changes in the LF of oocytes associated with the woman's age consisting of increased LDs size, area, and number. LF variations in oocytes were detectable also within individual donors. This finding makes LF assessment a promising tool to grade oocytes of the same patient, based on their quality. We next demonstrated age-associated changes in oocytes reflected by lipid peroxidation and composition changes; the accumulation of carotenoids; and alterations of structural properties of lipid bilayers. Finally, using a mouse model, we showed that LF changes in oocytes are negatively associated with the secretion of embryonic exosomes prior to implantation. Deficient exosome secretion disrupts communication between the embryo and the uterus and thus may explain recurrent implantation failures in advanced-age patients. LIMITATIONS, REASONS FOR CAUTION: Due to differences in lipid content between different species' oocytes, the developmental impact of lipid oxidation and consequent LF changes may differ across mammalian oocytes. WIDER IMPLICATIONS OF THE FINDINGS: Our findings open the possibility to develop an innovative tool for oocyte assessment and highlight likely functional connections between oocyte LDs and embryonic exosome secretion. By recognizing the role of oocyte LF in shaping the embryo's ability to implant, our original work points to future directions of research relevant to developmental biology and reproductive medicine. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by National Science Centre of Poland, Grants: 2021/41/B/NZ3/03507 and 2019/35/B/NZ4/03547 (to G.E.P.); 2022/44/C/NZ4/00076 (to M.F.H.) and 2019/35/N/NZ3/03213 (to Ł.G.). M.F.H. is a National Agency for Academic Exchange (NAWA) fellow (GA ULM/2019/1/00097/U/00001). K.F. is a Diamond Grant fellow (Ministry of Education and Science GA 0175/DIA/2019/28). The open-access publication of this article was funded by the Priority Research Area BioS under the program "Excellence Initiative - Research University" at the Jagiellonian University in Krakow. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.
- MeSH
- Adult MeSH
- Embryonic Development physiology MeSH
- Humans MeSH
- Lipid Droplets metabolism MeSH
- Lipid Metabolism MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- Oxidative Stress MeSH
- Spectrum Analysis, Raman MeSH
- Aging metabolism MeSH
- Microscopy, Electron, Transmission MeSH
- Maternal Age MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Activation of nuclear factor-kappa B (NF-κB) signalling is key in the pathogenesis of chronic kidney disease (CKD). However, a certain level of NF-κB activity is necessary to enable tissue repair. METHODS: The relationship between activated and inactivated NF-κB signaling and the pathogenesis of CKD was investigated using mouse models of NF-κB partial inactivation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into alanine) and activation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into serine). RESULTS: The density of CD3, CD8, CD68 positive cells, as well as the expression of interleukin 6, Tumor necrosis factor receptor associated factor 1 and Nef-associated factor 1 in the kidney tissues of NF-κBC59A mice were reduced, whereas an opposing pattern was observed in the NF-κBC59S mice. Blood pressure, kidney fibrosis (analyzed by periodic acid-Schiff, Masson trichrome and Sirius Red staining, as well as α-SMA immunofluorescence), serum creatinine and urinary albumin-to-creatinine ratio are markedly increased in NF-κB-activated and -inactivated mice compared with controls. Transmission electron microscopy indicated that the glomerular basement membrane was thicker in both NF-κBC59A and NF-κBC59S mice compared with wild-type mice. CONCLUSIONS: Using mice models with partially activated and inactivated NF-κB pathways suggests that there is an apparently U-shaped relationship between blood pressure, kidney function as well as morphology and the activation of the NF-κB pathway. A certain optimal activity of the NF-κB pathway seems to be important to maintain optimal kidney function and morphology.
- MeSH
- Renal Insufficiency, Chronic metabolism pathology etiology MeSH
- Fibrosis MeSH
- Hypertension * metabolism etiology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- NF-kappa B * metabolism MeSH
- Signal Transduction * MeSH
- Blotting, Western MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 μg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 μg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
- MeSH
- Anti-Bacterial Agents * pharmacology chemistry chemical synthesis MeSH
- Biofilms * drug effects MeSH
- Escherichia coli * drug effects MeSH
- Catalysis MeSH
- Metal Nanoparticles * chemistry MeSH
- Microbial Sensitivity Tests * MeSH
- Pseudomonas aeruginosa * drug effects metabolism MeSH
- Selenium chemistry pharmacology MeSH
- Silver Compounds chemistry pharmacology MeSH
- Staphylococcus aureus * drug effects MeSH
- Silver * chemistry pharmacology metabolism MeSH
- Green Chemistry Technology * MeSH
- Publication type
- Journal Article MeSH