Cathodoluminescence imaging of cellular structures labeled with luminescent iridium or rhenium complexes at cryogenic temperatures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35927332
PubMed Central
PMC9352783
DOI
10.1038/s41598-022-17723-w
PII: 10.1038/s41598-022-17723-w
Knihovny.cz E-zdroje
- MeSH
- iridium chemie MeSH
- komplexní sloučeniny * chemie MeSH
- luminiscence MeSH
- rhenium * chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- iridium MeSH
- komplexní sloučeniny * MeSH
- rhenium * MeSH
We report for the first time the use of two live-cell imaging agents from the group of luminescent transition metal complexes (IRAZOLVE-MITO and REZOLVE-ER) as cathodoluminescent probes. This first experimental demonstration shows the application of both probes for the identification of cellular structures at the nanoscale and near the native state directly in the cryo-scanning electron microscope. This approach can potentially be applied to correlative and multimodal approaches and used to target specific regions within vitrified samples at low electron beam energies.
CRYTUR Spol S R O Turnov 511 01 Czech Republic
Faculty of Science Charles University Prague Prague 128 00 Czech Republic
Faculty of Science University of South Bohemia České Budějovice 37005 Czech Republic
Institute of Parasitology Biology Centre CAS České Budějovice 37005 Czech Republic
Institute of Scientific Instruments CAS Brno 612 000 Czech Republic
Zobrazit více v PubMed
Tabata S, et al. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience. 2019;22:256–268. doi: 10.1016/j.isci.2019.11.025. PubMed DOI PMC
Bakkum T, et al. Bioorthogonal correlative light-electron microscopy of mycobacterium tuberculosis in macrophages reveals the effect of antituberculosis drugs on subcellular bacterial distribution. ACS Cent. Sci. 2020;6:1997–2007. doi: 10.1021/acscentsci.0c00539. PubMed DOI PMC
Kaufmann R, et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 2014;14:4171–4175. doi: 10.1021/nl501870p. PubMed DOI PMC
Strnad M, et al. Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci. Rep. 2015;5:18029. doi: 10.1038/srep18029. PubMed DOI PMC
Vancová M, et al. Pleomorphism and viability of the lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: A correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front. Microbiol. 2017;8:596–596. doi: 10.3389/fmicb.2017.00596. PubMed DOI PMC
Pease RFW, Hayes TL. Scanning electron microscopy of biological material. Nature. 1966;210:1049–1049. doi: 10.1038/2101049a0. PubMed DOI
Zielinski MS, et al. Quantitative intrinsic auto-cathodoluminescence can resolve spectral signatures of tissue-isolated collagen extracellular matrix. Commun. Biol. 2019;2:69. doi: 10.1038/s42003-019-0313-x. PubMed DOI PMC
De Mets M, Lagasse A. An investigation of some organic chemicals as cathodoluminescent dyes using the scanning electron microscope. J. Microsc. 1971;94:151–156. doi: 10.1111/j.1365-2818.1971.tb03698.x. PubMed DOI
Fisher PJ, Wessels WS, Dietz AB, Prendergast FG. Enhanced biological cathodoluminescence. Opt. Commun. 2008;281:1901–1908. doi: 10.1016/j.optcom.2007.04.069. DOI
Akiba K, Tamehiro K, Matsui K, Ikegami H, Minoda H. Cathodoluminescence of green fluorescent protein exhibits the redshifted spectrum and the robustness. Sci. Rep. 2020;10:17342. doi: 10.1038/s41598-020-74367-4. PubMed DOI PMC
Fern GR, Silver J, Coe-Sullivan S. Cathodoluminescence and electron microscopy of red quantum dots used for display applications. J. Soc. Inform. Display. 2015;23:50–55. doi: 10.1002/jsid.278. DOI
Keevend K, et al. Tb3+-doped LaF3 nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focused ion beam-sectioned biological samples. Nanoscale. 2017;9:4383–4387. doi: 10.1039/C6NR09187C. PubMed DOI
Nagarajan S, et al. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale. 2016;8:11588–11594. doi: 10.1039/C6NR01908K. PubMed DOI
Prigozhin MB, et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 2019;14:420–425. doi: 10.1038/s41565-019-0395-0. PubMed DOI PMC
Keevend K, et al. Ultra-bright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Lett. 2019;19:6013. doi: 10.1021/acs.nanolett.9b01819. PubMed DOI
Glenn DR, et al. Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep. 2012;2:865–865. doi: 10.1038/srep00865. PubMed DOI PMC
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: Towards single protein labelling with ultrastructural context. Nanoscale. 2020;12:15588–15603. doi: 10.1039/D0NR02563A. PubMed DOI
Fukushima S, et al. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging. Sci. Rep. 2016;6:25950. doi: 10.1038/srep25950. PubMed DOI PMC
Keevend K, et al. Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy bioimaging. Nano Lett. 2019;19:6013–6018. doi: 10.1021/acs.nanolett.9b01819. PubMed DOI
Furukawa T, et al. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy. J. Biomed. Opt. 2015;20:056007. doi: 10.1117/1.JBO.20.5.056007. PubMed DOI
Bader CA, et al. Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time. FEBS Lett. 2016;590:3051–3060. doi: 10.1002/1873-3468.12365. PubMed DOI
Sorvina A, et al. Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex. Sci. Rep. 2018;8:8191. doi: 10.1038/s41598-018-24672-w. PubMed DOI PMC
Caporale C, Massi M. Cyclometalated iridium(III) complexes for life science. Coord. Chem. Rev. 2018;363:71–91. doi: 10.1016/j.ccr.2018.02.006. DOI
Caporale C, et al. Investigating intracellular localisation and cytotoxicity trends for neutral and cationic iridium tetrazolato complexes in live cells. Chemistry. 2017;23:15666–15679. doi: 10.1002/chem.201701352. PubMed DOI
Bader CA, et al. Modulation of the organelle specificity in Re(i) tetrazolato complexes leads to labeling of lipid droplets. RSC Adv. 2014;4:16345–16351. doi: 10.1039/C4RA00050A. DOI
Sánchez MI, et al. MitoBlue as a tool to analyze the mitochondria-lysosome communication. Sci. Rep. 2020;10:3528. doi: 10.1038/s41598-020-60573-7. PubMed DOI PMC
Wright PJ, et al. Synthesis, photophysical and electrochemical investigation of dinuclear tetrazolato-bridged rhenium complexes. Organometallics. 2012;31:7566–7578. doi: 10.1021/om300870a. DOI
Wang S, Li S, Ji G, Huang X, Sun F. Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys. Rep. 2017;3:8–16. doi: 10.1007/s41048-017-0035-x. PubMed DOI PMC
Gorelick S, et al. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife. 2019;8:e45919. doi: 10.7554/eLife.45919. PubMed DOI PMC
Liu Z, Bian Z, Huang C. In: Molecular Organometallic Materials for Optics. Hubert B, Véronique G, editors. Springer; 2010. pp. 113–142.
Dixon IM, et al. A family of luminescent coordination compounds: Iridium() polyimine complexes. Chem. Soc. Rev. 2000;29:385–391. doi: 10.1039/B000704H. DOI
Caporale C, et al. Photophysical and biological properties of iridium tetrazolato complexes functionalised with fatty acid chains. Inorganics. 2020;8:23. doi: 10.3390/inorganics8040023. DOI
Amoroso AJ, et al. 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: A thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria. New J. Chem. 2008;32:1097–1102. doi: 10.1039/B802215A. DOI
Bader C, et al. Modulation of the organelle specificity in Re( I) tetrazolato complexes leads to labeling of lipid droplets dagger. RSC Adv. 2014;4:16345. doi: 10.1039/C4RA00050A. DOI
Tian X, et al. A cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy. Adv. Mater. 2020;32:2003901. doi: 10.1002/adma.202003901. PubMed DOI
Leone G, et al. A phosphorescent iridium complex as a probe for diatom cells’ viability. MRS Adv. 2020;5:935–941. doi: 10.1557/adv.2020.18. DOI
Lo KK-W. Luminescent rhenium(I) and iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc. Chem. Res. 2015;48:2985–2995. doi: 10.1021/acs.accounts.5b00211. PubMed DOI
Yip A, Lo KK-W. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord. Chem. Rev. 2018;361:138–163. doi: 10.1016/j.ccr.2018.01.021. DOI
Natan. “Fast 2D Peak Finder.” Matlab Central File Exchange. https://es.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder?s_tid=FX_rc1_behav (accessed on 8 July 2021). (2021).
Drouin D, et al. CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. 2007;29:92–101. doi: 10.1002/sca.20000. PubMed DOI