Cathodoluminescence imaging of cellular structures labeled with luminescent iridium or rhenium complexes at cryogenic temperatures

. 2022 Aug 04 ; 12 (1) : 13432. [epub] 20220804

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35927332
Odkazy

PubMed 35927332
PubMed Central PMC9352783
DOI 10.1038/s41598-022-17723-w
PII: 10.1038/s41598-022-17723-w
Knihovny.cz E-zdroje

We report for the first time the use of two live-cell imaging agents from the group of luminescent transition metal complexes (IRAZOLVE-MITO and REZOLVE-ER) as cathodoluminescent probes. This first experimental demonstration shows the application of both probes for the identification of cellular structures at the nanoscale and near the native state directly in the cryo-scanning electron microscope. This approach can potentially be applied to correlative and multimodal approaches and used to target specific regions within vitrified samples at low electron beam energies.

Zobrazit více v PubMed

Tabata S, et al. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience. 2019;22:256–268. doi: 10.1016/j.isci.2019.11.025. PubMed DOI PMC

Bakkum T, et al. Bioorthogonal correlative light-electron microscopy of mycobacterium tuberculosis in macrophages reveals the effect of antituberculosis drugs on subcellular bacterial distribution. ACS Cent. Sci. 2020;6:1997–2007. doi: 10.1021/acscentsci.0c00539. PubMed DOI PMC

Kaufmann R, et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 2014;14:4171–4175. doi: 10.1021/nl501870p. PubMed DOI PMC

Strnad M, et al. Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci. Rep. 2015;5:18029. doi: 10.1038/srep18029. PubMed DOI PMC

Vancová M, et al. Pleomorphism and viability of the lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: A correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front. Microbiol. 2017;8:596–596. doi: 10.3389/fmicb.2017.00596. PubMed DOI PMC

Pease RFW, Hayes TL. Scanning electron microscopy of biological material. Nature. 1966;210:1049–1049. doi: 10.1038/2101049a0. PubMed DOI

Zielinski MS, et al. Quantitative intrinsic auto-cathodoluminescence can resolve spectral signatures of tissue-isolated collagen extracellular matrix. Commun. Biol. 2019;2:69. doi: 10.1038/s42003-019-0313-x. PubMed DOI PMC

De Mets M, Lagasse A. An investigation of some organic chemicals as cathodoluminescent dyes using the scanning electron microscope. J. Microsc. 1971;94:151–156. doi: 10.1111/j.1365-2818.1971.tb03698.x. PubMed DOI

Fisher PJ, Wessels WS, Dietz AB, Prendergast FG. Enhanced biological cathodoluminescence. Opt. Commun. 2008;281:1901–1908. doi: 10.1016/j.optcom.2007.04.069. DOI

Akiba K, Tamehiro K, Matsui K, Ikegami H, Minoda H. Cathodoluminescence of green fluorescent protein exhibits the redshifted spectrum and the robustness. Sci. Rep. 2020;10:17342. doi: 10.1038/s41598-020-74367-4. PubMed DOI PMC

Fern GR, Silver J, Coe-Sullivan S. Cathodoluminescence and electron microscopy of red quantum dots used for display applications. J. Soc. Inform. Display. 2015;23:50–55. doi: 10.1002/jsid.278. DOI

Keevend K, et al. Tb3+-doped LaF3 nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focused ion beam-sectioned biological samples. Nanoscale. 2017;9:4383–4387. doi: 10.1039/C6NR09187C. PubMed DOI

Nagarajan S, et al. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale. 2016;8:11588–11594. doi: 10.1039/C6NR01908K. PubMed DOI

Prigozhin MB, et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 2019;14:420–425. doi: 10.1038/s41565-019-0395-0. PubMed DOI PMC

Keevend K, et al. Ultra-bright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Lett. 2019;19:6013. doi: 10.1021/acs.nanolett.9b01819. PubMed DOI

Glenn DR, et al. Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep. 2012;2:865–865. doi: 10.1038/srep00865. PubMed DOI PMC

Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: Towards single protein labelling with ultrastructural context. Nanoscale. 2020;12:15588–15603. doi: 10.1039/D0NR02563A. PubMed DOI

Fukushima S, et al. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging. Sci. Rep. 2016;6:25950. doi: 10.1038/srep25950. PubMed DOI PMC

Keevend K, et al. Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy bioimaging. Nano Lett. 2019;19:6013–6018. doi: 10.1021/acs.nanolett.9b01819. PubMed DOI

Furukawa T, et al. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy. J. Biomed. Opt. 2015;20:056007. doi: 10.1117/1.JBO.20.5.056007. PubMed DOI

Bader CA, et al. Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time. FEBS Lett. 2016;590:3051–3060. doi: 10.1002/1873-3468.12365. PubMed DOI

Sorvina A, et al. Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex. Sci. Rep. 2018;8:8191. doi: 10.1038/s41598-018-24672-w. PubMed DOI PMC

Caporale C, Massi M. Cyclometalated iridium(III) complexes for life science. Coord. Chem. Rev. 2018;363:71–91. doi: 10.1016/j.ccr.2018.02.006. DOI

Caporale C, et al. Investigating intracellular localisation and cytotoxicity trends for neutral and cationic iridium tetrazolato complexes in live cells. Chemistry. 2017;23:15666–15679. doi: 10.1002/chem.201701352. PubMed DOI

Bader CA, et al. Modulation of the organelle specificity in Re(i) tetrazolato complexes leads to labeling of lipid droplets. RSC Adv. 2014;4:16345–16351. doi: 10.1039/C4RA00050A. DOI

Sánchez MI, et al. MitoBlue as a tool to analyze the mitochondria-lysosome communication. Sci. Rep. 2020;10:3528. doi: 10.1038/s41598-020-60573-7. PubMed DOI PMC

Wright PJ, et al. Synthesis, photophysical and electrochemical investigation of dinuclear tetrazolato-bridged rhenium complexes. Organometallics. 2012;31:7566–7578. doi: 10.1021/om300870a. DOI

Wang S, Li S, Ji G, Huang X, Sun F. Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys. Rep. 2017;3:8–16. doi: 10.1007/s41048-017-0035-x. PubMed DOI PMC

Gorelick S, et al. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife. 2019;8:e45919. doi: 10.7554/eLife.45919. PubMed DOI PMC

Liu Z, Bian Z, Huang C. In: Molecular Organometallic Materials for Optics. Hubert B, Véronique G, editors. Springer; 2010. pp. 113–142.

Dixon IM, et al. A family of luminescent coordination compounds: Iridium() polyimine complexes. Chem. Soc. Rev. 2000;29:385–391. doi: 10.1039/B000704H. DOI

Caporale C, et al. Photophysical and biological properties of iridium tetrazolato complexes functionalised with fatty acid chains. Inorganics. 2020;8:23. doi: 10.3390/inorganics8040023. DOI

Amoroso AJ, et al. 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: A thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria. New J. Chem. 2008;32:1097–1102. doi: 10.1039/B802215A. DOI

Bader C, et al. Modulation of the organelle specificity in Re( I) tetrazolato complexes leads to labeling of lipid droplets dagger. RSC Adv. 2014;4:16345. doi: 10.1039/C4RA00050A. DOI

Tian X, et al. A cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy. Adv. Mater. 2020;32:2003901. doi: 10.1002/adma.202003901. PubMed DOI

Leone G, et al. A phosphorescent iridium complex as a probe for diatom cells’ viability. MRS Adv. 2020;5:935–941. doi: 10.1557/adv.2020.18. DOI

Lo KK-W. Luminescent rhenium(I) and iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc. Chem. Res. 2015;48:2985–2995. doi: 10.1021/acs.accounts.5b00211. PubMed DOI

Yip A, Lo KK-W. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord. Chem. Rev. 2018;361:138–163. doi: 10.1016/j.ccr.2018.01.021. DOI

Natan. “Fast 2D Peak Finder.” Matlab Central File Exchange. https://es.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder?s_tid=FX_rc1_behav (accessed on 8 July 2021). (2021).

Drouin D, et al. CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. 2007;29:92–101. doi: 10.1002/sca.20000. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...