Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36467577
PubMed Central
PMC9705369
DOI
10.1016/j.csbj.2022.11.031
PII: S2001-0370(22)00524-4
Knihovny.cz E-zdroje
- Klíčová slova
- CIF, Crystallographic Information File, CSA, Catalytic Site Atlas, Caver, CaverDock, Channel, FDA, U.S. Food and Drug Administration, FDA-approved drug, IDSM, Integrated Database of Small Molecules, PDB, Protein Data Bank, Tunnel, Virtual screening, Web,
- Publikační typ
- časopisecké články MeSH
Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels' geometrical and physico-chemical properties influence the transport process. The tunnels are attractive hot spots for protein engineering and drug development. However, studying the ligand binding and unbinding using experimental techniques is challenging, while in silico methods come with their limitations, especially in the case of resource-demanding virtual screening pipelines. Caver Web 1.2 is a new version of the web server combining the capabilities for the detection of protein tunnels with the calculation of the ligand trajectories. The new version of the Caver Web server was expanded with the ability to fetch novel ligands from the Integrated Database of Small Molecules and with the fully automated virtual screening pipeline allowing for the fast evaluation of the predefined set of over 4,300 currently approved drugs. The virtual screening pipeline is accompanied by a comprehensive user interface, making it a viable service for the broader spectrum of companies and the academic user community. The web server is freely available for academic use at https://loschmidt.chemi.muni.cz/caverweb.
Faculty of Information Technology Brno University of Technology Brno Czech Republic
Institute of Organic Chemistry and Biochemistry of the CAS Prague Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Wagner B.K., Schreiber S.L. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol. 2016;23(1):3–9. doi: 10.1016/j.chembiol.2015.11.008. PubMed DOI PMC
Zheng W., Thorne N., McKew J.C. Phenotypic Screens as a Renewed Approach for Drug Discovery. Drug Discov Today. 2013;18(21):1067–1073. doi: 10.1016/j.drudis.2013.07.001. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Eder J., Sedrani R., Wiesmann C. The Discovery of First-in-Class Drugs: Origins and Evolution. Nat Rev Drug Discov. 2014;13(8):577–587. doi: 10.1038/nrd4336. PubMed DOI
An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature2012, 489 (7414), 57–74. 10.1038/nature11247. PubMed PMC
Kim M.-S., Pinto S.M., Getnet D., Nirujogi R.S., Manda S.S., Chaerkady R., et al. A Draft Map of the Human Proteome. Nature. 2014;509(7502):575–581. doi: 10.1038/nature13302. PubMed DOI PMC
Geiger T., Wehner A., Schaab C., Cox J., Mann M. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Mol Cell Proteomics. 2012;11(3) doi: 10.1074/mcp.M111.014050. PubMed DOI PMC
Wilhelm M., Schlegl J., Hahne H., Gholami A.M., Lieberenz M., Savitski M.M., et al. Mass-Spectrometry-Based Draft of the Human Proteome. Nature. 2014;509(7502):582–587. doi: 10.1038/nature13319. PubMed DOI
Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., et al. Tissue-Based Map of the Human Proteome. Science. 2015 doi: 10.1126/science.1260419. PubMed DOI
DiMasi J.A., Grabowski H.G., Hansen R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012. PubMed DOI
Karamehic J., Ridic O., Ridic G., Jukic T., Coric J., Subasic D., et al. Financial Aspects and the Future of the Pharmaceutical Industry in the United States of America. Mater Sociomed. 2013;25(4):286–290. doi: 10.5455/msm.2013.25.286-290. PubMed DOI PMC
Vavra O., Filipovic J., Plhak J., Bednar D., Marques S.M., Brezovsky J., et al. CaverDock: A Molecular Docking-Based Tool to Analyse Ligand Transport through Protein Tunnels and Channels. Bioinformatics. 2019;35(23):4986–4993. doi: 10.1093/bioinformatics/btz386. PubMed DOI
Lee P.-H., Kuo K.-L., Chu P.-Y., Liu E.M., Lin J.-H. SLITHER: A Web Server for Generating Contiguous Conformations of Substrate Molecules Entering into Deep Active Sites of Proteins or Migrating through Channels in Membrane Transporters. Nucleic Acids Res. 2009;37(suppl_2):W559–W564. doi: 10.1093/nar/gkp359. PubMed DOI PMC
Devaurs D., Bouard L., Vaisset M., Zanon C., Al-Bluwi I., Iehl R., et al. MoMA-LigPath: A Web Server to Simulate Protein-Ligand Unbinding. Nucleic Acids Res. 2013;41(W1):W297–W302. doi: 10.1093/nar/gkt380. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Slater O., Kontoyianni M. The Compromise of Virtual Screening and Its Impact on Drug Discovery. Expert Opin Drug Discov. 2019;14(7):619–637. doi: 10.1080/17460441.2019.1604677. PubMed DOI
Shoichet B.K. Virtual Screening of Chemical Libraries. Nature. 2004;432(7019):862–865. doi: 10.1038/nature03197. PubMed DOI PMC
Stourac J., Vavra O., Kokkonen P., Filipovic J., Pinto G., Brezovsky J., et al. Caver Web 1.0: Identification of Tunnels and Channels in Proteins and Analysis of Ligand Transport. Nucleic Acids Res. 2019;47(W1):W414–W422. doi: 10.1093/nar/gkz378. PubMed DOI PMC
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., et al. 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput Biol. 2012;8(10):e1002708. PubMed PMC
Sterling T., Irwin J.J. ZINC 15 – Ligand Discovery for Everyone. J Chem Inf Model. 2015;55(11):2324–2337. doi: 10.1021/acs.jcim.5b00559. PubMed DOI PMC
Galgonek J., Vondrášek J. IDSM ChemWebRDF: SPARQLing Small-Molecule Datasets. J Cheminform. 2021;13(1):38. doi: 10.1186/s13321-021-00515-1. PubMed DOI PMC
Le Guilloux V., Schmidtke P., Tuffery P. Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinf. 2009;10(1):168. doi: 10.1186/1471-2105-10-168. PubMed DOI PMC
Ribeiro A.J.M., Holliday G.L., Furnham N., Tyzack J.D., Ferris K., Thornton J.M. Mechanism and Catalytic Site Atlas (M-CSA): A Database of Enzyme Reaction Mechanisms and Active Sites. Nucleic Acids Res. 2018;46(D1):D618–D623. doi: 10.1093/nar/gkx1012. PubMed DOI PMC
UniProt Consortium, T. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Research2018, 46 (5), 2699–2699. 10.1093/nar/gky092. PubMed PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Filipovič J., Vávra O., Plhák J., Bednář D., Marques S.M., Brezovský J., et al. CaverDock: A Novel Method for the Fast Analysis of Ligand Transport. IEEE/ACM Trans Comput Biol Bioinf. 2020;17(5):1625–1638. doi: 10.1109/TCBB.2019.2907492. PubMed DOI
Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., et al. PubChem Substance and Compound Databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213. doi: 10.1093/nar/gkv951. PubMed DOI PMC
Gaulton A., Bellis L.J., Bento A.P., Chambers J., Davies M., Hersey A., et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012;40(D1):D1100–D1107. doi: 10.1093/nar/gkr777. PubMed DOI PMC
Degtyarenko K., de Matos P., Ennis M., Hastings J., Zbinden M., McNaught A., et al. A Database and Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2008;36(suppl_1):D344–D350. doi: 10.1093/nar/gkm791. PubMed DOI PMC
PyMOL | pymol.org. https://pymol.org/2/ (accessed 2022-06-30).
Yang J., Cui B., Sun S., Shi T., Zheng S., Bi Y., et al. Phenotype-Genotype Correlation in Eight Chinese 17α-Hydroxylase/17,20 Lyase-Deficiency Patients with Five Novel Mutations of CYP17A1 Gene. The Journal of Clinical Endocrinology & Metabolism. 2006;91(9):3619–3625. doi: 10.1210/jc.2005-2283. PubMed DOI
Gong Y., Qin F., Li W.-J., Li L.-Y., He P., Zhou X.-J. Cytochrome P450 Family 17 Subfamily A Member 1 Mutation Causes Severe Pseudohermaphroditism: A Case Report. World J Clin Cases. 2022;10(11):3553–3560. doi: 10.12998/wjcc.v10.i11.3553. PubMed DOI PMC
Wang M., Wang H., Zhao H., Li L., Liu M., Liu F., et al. Prevalence of CYP17A1 Gene Mutations in 17α-Hydroxylase Deficiency in the Chinese Han Population. Clin Hypertens. 2019;25(1):23. doi: 10.1186/s40885-019-0128-6. PubMed DOI PMC
Mula-Abed W.-A.-S., Pambinezhuth F.B., Al-Kindi M.K., Al-Busaidi N.B., Al-Muslahi H.N., Al-Lamki M.A. Congenital Adrenal Hyperplasia Due to 17-Alpha-Hydoxylase/17,20-Lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman. Oman Med J. 2014;29(1):55–59. doi: 10.5001/omj.2014.12. PubMed DOI PMC
Costa-Santos M., Kater C.E., Auchus R.J., Brazilian Congenital Adrenal Hyperplasia Multicenter Study Group Two Prevalent CYP17 Mutations and Genotype-Phenotype Correlations in 24 Brazilian Patients with 17-Hydroxylase Deficiency. J Clin Endocrinol Metab. 2004;89(1):49–60. doi: 10.1210/jc.2003-031021. PubMed DOI
Acién P., Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med. 2020;9(11):3555. doi: 10.3390/jcm9113555. PubMed DOI PMC
Kostin V.A., Zolottsev V.A., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V., Veselovsky A.V., et al. Oxazolinyl Derivatives of [17(20)E]-21-Norpregnene Differing in the Structure of A and B Rings. Facile Synthesis and Inhibition of CYP17A1 Catalytic Activity. Steroids. 2016;115:114–122. doi: 10.1016/j.steroids.2016.06.002. PubMed DOI
Bonomo S., Hansen C.H., Petrunak E.M., Scott E.E., Styrishave B., Jørgensen F.S., et al. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Sci Rep. 2016;6:29468. doi: 10.1038/srep29468. PubMed DOI PMC
Mostaghel E.A., Marck B.T., Plymate S.R., Vessella R.L., Balk S., Matsumoto A.M., et al. Resistance to CYP17A1 Inhibition with Abiraterone in Castration-Resistant Prostate Cancer: Induction of Steroidogenesis and Androgen Receptor Splice Variants. Clin Cancer Res. 2011;17(18):5913–5925. doi: 10.1158/1078-0432.CCR-11-0728. PubMed DOI PMC
Cheong E.J.Y., Nair P.C., Neo R.W.Y., Tu H.T., Lin F., Chiong E., et al. Slow-, Tight-Binding Inhibition of CYP17A1 by Abiraterone Redefines Its Kinetic Selectivity and Dosing Regimen. J Pharmacol Exp Ther. 2020;374(3):438–451. doi: 10.1124/jpet.120.265868. PubMed DOI PMC
Storbeck K.-H., Swart P., Africander D., Conradie R., Louw R., Swart A.C. 16α-Hydroxyprogesterone: Origin, Biosynthesis and Receptor Interaction. Mol Cell Endocrinol. 2011;336(1–2):92–101. doi: 10.1016/j.mce.2010.11.016. PubMed DOI
DeVore N.M., Scott E.E. Structures of Cytochrome P450 17A1 with Prostate Cancer Drugs Abiraterone and TOK-001. Nature. 2012;482(7383):116–119. doi: 10.1038/nature10743. PubMed DOI PMC
Vasaitis T.S., Bruno R.D., Njar V.C.O. CYP17 Inhibitors for Prostate Cancer Therapy. J Steroid Biochem Mol Biol. 2011;125(1–2):23–31. doi: 10.1016/j.jsbmb.2010.11.005. PubMed DOI PMC
Enzyme Tunnels and Gates As Relevant Targets in Drug Design - Marques - 2017 - Medicinal Research Reviews - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/med.21430 (accessed 2022-08-04). PubMed
Fernández-Cancio M., Camats N., Flück C.E., Zalewski A., Dick B., Frey B.M., et al. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency. Pharmaceuticals (Basel) 2018;11(2):E37. doi: 10.3390/ph11020037. PubMed DOI PMC
Eil C. Ketoconazole Binds to the Human Androgen Receptor. Horm Metab Res. 1992;24(8):367–370. doi: 10.1055/s-2007-1003337. PubMed DOI
Liu Y., Denisov I., Gregory M., Sligar S.G., Kincaid J.R. Importance of Asparagine 202 in Manipulating Active Site Structure and Substrate Preference for Human CYP17A1. Biochemistry. 2022;61(7):583–594. doi: 10.1021/acs.biochem.2c00023. PubMed DOI PMC
Varothai S., Bergfeld W.F. Androgenetic Alopecia: An Evidence-Based Treatment Update. Am J Clin Dermatol. 2014;15(3):217–230. doi: 10.1007/s40257-014-0077-5. PubMed DOI
Finasteride for Prostate Cancer Prevention - NCI. https://www.cancer.gov/types/prostate/research/finasteride-reduces-low-grade (accessed 2022-08-04).
Zink, C. Dictionary of Obstetrics and Gynecology; Walter de Gruyter, 2011.
Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S2001037021002245 (accessed 2022-08-04). PubMed PMC