Developmental Validation of DNA Quantitation System, Extended STR Typing Multiplex, and Database Solutions for Panthera leo Genotyping
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VJ01010026
Ministry of Interior, Czech Republic
PubMed
40283218
PubMed Central
PMC12028859
DOI
10.3390/life15040664
PII: life15040664
Knihovny.cz E-zdroje
- Klíčová slova
- CITES organism, DNA quantitation, STR multiplex, databasing, forensic genetics, matching analysis, species determination, wildlife,
- Publikační typ
- časopisecké články MeSH
This study describes the development of a species determination/DNA quantification system called Pleo Qplex and an individual identification STR multiplex called Pleo STRplex using Panthera leo samples. Pleo Qplex enables us to measure the quantity of extracted nuclear and mitochondrial DNA and detect the presence of co-purified inhibitors. Pleo STRplex, consisting of seven loci, enables the determination of the DNA profile from a sample of Panthera leo based on the analysis of short tandem repeats (STRs). The Pleo STRplex provides additional loci on top of previously published STR loci in Ptig STRplex and contains a specific STR marker that confirms Panthera leo. An allelic ladder of all STR markers was prepared to enable reliable allele calling. The STR loci can also be used to type the DNA of other members of the genus Panthera. The work on the resulting STR profiles is performed using GenoProof Suite, which offers databasing, matching, and relationship analysis.
Bulovka University Hospital Budinova 2 18000 Prague Czech Republic
Zobrazit více v PubMed
Brugière D., Chardonnet B., Scholte P. Large-scale extinction of large carnivores (lion Panthera leo, cheetah Acinonyx jubatus and wild dog Lycaon pictus) in protected areas of West and Central Africa. Trop. Conserv. Sci. 2015;8:513–527. doi: 10.1177/194008291500800215. DOI
Cazalis V., Santini L., Lucas P.M., González-Suárez M., Hoffmann M., Benítez-López A., Pacifici M., Schipper A.M., Böhm M., Zizka A., et al. Prioritizing the reassessment of data-deficient species on the IUCN Red List. Conserv. Biol. 2023;37:e14139. doi: 10.1111/cobi.14139. PubMed DOI
Whitman K., Starfield A.M., Quadling H.S., Packer C. Sustainable trophy hunting of African lions. Nature. 2004;428:175–178. doi: 10.1038/nature02395. PubMed DOI
Johanisová L., Mauerhofer V. Assessing trophy hunting in South Africa by comparing hunting and exporting databases. J. Nat. Conserv. 2023;72:126363. doi: 10.1016/j.jnc.2023.126363. DOI
Everatt K., Kokes R., Lopez Pereira C. Evidence of a further emerging threat to lion conservation; targeted poaching for body parts. Biodivers. Conserv. 2019;28:4099–4114. doi: 10.1007/s10531-019-01866-w. DOI
Coals P.G., Mbongwa N.S., Naude V.N., Williams V.L. Contemporary cultural trade of lion body parts. Animals. 2022;12:3169. doi: 10.3390/ani12223169. PubMed DOI PMC
Bauer H., Nowell K., Sillero-Zubiri C., Macdonald D.W. Lions in the modern arena of CITES. Conserv. Lett. 2018;11:e12444. doi: 10.1111/conl.12444. DOI
Coals P., Moorhouse T.P., D’Cruze N.C., Macdonald D.W., Loveridge A.J. Preferences for lion and tiger bone wines amongst the urban public in China and Vietnam. J. Nat. Conserv. 2020;57:125874. doi: 10.1016/j.jnc.2020.125874. DOI
Sibanda L., van der Meer E., Johnson P.J., Hughes C., Dlodlo B., Parry R.H., Mathe L.J., Hunt J.E., Macdonald D.W., Loveridge A.J. Evaluating the effects of a conservation intervention on rural farmers’ attitudes toward lions. Hum. Dimens. Wildl. 2021;26:445–460. doi: 10.1080/10871209.2020.1850933. DOI
Vieira Da Silva C., Afonso Costa H., Costa Santos J., Espinheira R. Forensic Genetics as a Tool for Peace and Justice: An Overview on DNA Quantification. J. Forensic Res. 2012;4 doi: 10.4172/2157-7145.S11-008. DOI
Vajpayee K., Dash H.R., Parekh P.B., Shukla R.K. PCR Inhibitors and Facilitators-Their Role in Forensic DNA Analysis. Forensic Sci. Int. 2023;349:111773. doi: 10.1016/j.forsciint.2023.111773. PubMed DOI
Kuffel A., Gray A., Daeid N.N. Impact of metal ions on PCR inhibition and RT-PCR efficiency. Int. J. Leg. Med. 2021;135:63–72. doi: 10.1007/s00414-020-02363-4. PubMed DOI PMC
Hedman J., Rådström P. PCR Detection of Microbial Pathogens. Springer Science & Business Media; Berlin, Germany: 2013. Overcoming inhibition in real-time diagnostic PCR; pp. 17–48. PubMed
Andréasson H., Gyllensten U., Allen M. Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques. 2002;33:402–411. doi: 10.2144/02332rr07. PubMed DOI
Fregeau C.J., Fourney R.M. DNA typing with fluorescently tagged short tandem repeats: A sensitive and accurate approach to human identification. Biotechniques. 1993;15:100–119. PubMed
Puri A. An international DNA database: Balancing hope, privacy, and scientific error. BC Int’l Comp. L. Rev. 2000;24:341. PubMed
Khan R. Is the FBI’s Criminal Justice Database, CODIS, Approaching Its Expiration Date? Forensic Genom. 2021;1:39–40. doi: 10.1089/forensic.2021.29002.rk. DOI
Bataille M., Crainic K., Leterreux M., Durigon M., de Mazancourt P. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci. Int. 1999;99:165–170. doi: 10.1016/S0379-0738(98)00185-6. PubMed DOI
Hellmann A.P., Rohleder U., Eichmann C., Pfeiffer I., Parson W., Schleenbecker U. A proposal for standardization in forensic canine DNA typing: Allele nomenclature of six canine-specific STR loci. J. Forensic Sci. 2006;51:274–281. doi: 10.1111/j.1556-4029.2006.00049.x. PubMed DOI
Kanthaswamy S. domestic animal forensic genetics–biological evidence, genetic markers, analytical approaches and challenges. Anim. Genet. 2015;46:473–484. doi: 10.1111/age.12335. PubMed DOI
Menotti-Raymond M., Stephens J., Lyons L., O’Brien S., David V. Genetic individualization of domestic cats using feline STR loci for forensic applications. J. Forensic Sci. 1997;42:1039–1051. doi: 10.1520/JFS14258J. PubMed DOI
Halverson J.L., Basten C. Forensic DNA identification of animal-derived trace evidence: Tools for linking victims and suspects. Croat. Med. J. 2005;46:598. PubMed
Lorenzini R., Cabras P., Fanelli R., Carboni G.L. Wildlife molecular forensics: Identification of the Sardinian mouflon using STR profiling and the Bayesian assignment test. Forensic Sci. Int. Genet. 2011;5:345–349. doi: 10.1016/j.fsigen.2011.01.012. PubMed DOI
Caratti S., Rossi L., Sona B., Origlia S., Viara S., Martano G., Torre C., Robino C. Analysis of 11 tetrameric STRs in wild boars for forensic purposes. Forensic Sci. Int. Genet. 2010;4:339–342. doi: 10.1016/j.fsigen.2010.07.001. PubMed DOI
Harper C.K. Wildlife Biodiversity Conservation: Multidisciplinary and Forensic Approaches. Springer; Berlin/Heidelberg, Germany: 2021. RhODIS®(The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros; pp. 463–485.
Harper C., Ludwig A., Clarke A., Makgopela K., Yurchenko A., Guthrie A., Dobrynin P., Tamazian G., Emslie R., van Heerden M., et al. Robust forensic matching of confiscated horns to individual poached African rhinoceros. Curr. Biol. 2018;28:R13–R14. doi: 10.1016/j.cub.2017.11.005. PubMed DOI
Singh A., Priyambada P., Jabin G., Singh S.K., Joshi B.D., Venkatraman C., Chandra K., Sharma L.K., Thakur M. Pangolin Indexing System: Implications in forensic surveillance of large seizures. Int. J. Leg. Med. 2020;134:1613–1618. doi: 10.1007/s00414-020-02362-5. PubMed DOI
Roberto B., Mauro Z., Claudia C., Gianluca D., Marta B., Michel D., Luciano D.T., Luigi L.F., Oliviero O., Francesco P., et al. Who’s who in the western Hermann’s tortoise conservation: A STR toolkit and reference database for wildlife forensic genetic analyses. bioRxiv. 2018:484030. doi: 10.1101/484030. DOI
Biello R., Zampiglia M., Corti C., Deli G., Biaggini M., Crestanello B., Delaugerre M., Di Tizio L., Leonetti F.L., Casari S., et al. Mapping the geographic origin of captive and confiscated Hermann’s tortoises: A genetic toolkit for conservation and forensic analyses. Forensic Sci. Int. Genet. 2021;51:102447. doi: 10.1016/j.fsigen.2020.102447. PubMed DOI
Jan C., Fumagalli L. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae) PeerJ. 2016;4:e2416. doi: 10.7717/peerj.2416. PubMed DOI PMC
Willows-Munro S., Kleinhans C. Testing microsatellite loci for individual identification of captive African grey parrots (Psittacus erithacus): A molecular tool for parentage analysis that will aid in monitoring legal trade. Conserv. Genet. Resour. 2020;12:489–495. doi: 10.1007/s12686-019-01127-6. DOI
De Bruyn M., Dalton D.L., Mwale M., Ehlers K., Kotze A. Development and Validation of a Novel Forensic STR Multiplex Assay for Blue (Anthropoides paradiseus), Wattled (Bugeranus carunculatus), and Grey-Crowned Crane (Balearica regulorum) Forensic Sci. Int. Genet. 2024;73:103100. doi: 10.1016/j.fsigen.2024.103100. PubMed DOI
Potoczniak M.J., Chermak M., Quarino L., Tobe S.S., Conte J. Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. Int. J. Leg. Med. 2020;134:55–62. doi: 10.1007/s00414-019-02097-y. PubMed DOI
Kinuthia J., Harper C., Muya S., Kimwele C., Alakonya A., Muigai A., Gakuya F., Mwaniki M., Gatebe E. The selection of a standard STR panel for DNA profiling of the African elephant (Loxodonta africana) in Kenya. Conserv. Genet. Resour. 2015;7:305–307. doi: 10.1007/s12686-014-0366-6. DOI
Vaněk D., Ehler E., Vaňková L. Development of DNA quantitation and STR typing systems for Panthera tigris species determination and individual identification in forensic casework. Eur. J. Environ. Sci. 2021;11:113–118. doi: 10.14712/23361964.2021.13. DOI
Liu Y., Xu J., Chen M., Wang C., Li S. A unified STR profiling system across multiple species with whole genome sequencing data. BMC Bioinform. 2019;20:671. doi: 10.1186/s12859-019-3246-y. PubMed DOI PMC
Dawnay N., Ogden R., Wetton J.H., Thorpe R.S., McEwing R. Genetic data from 28 STR loci for forensic individual identification and parentage analyses in 6 bird of prey species. Forensic Sci. Int. Genet. 2009;3:e63–e69. doi: 10.1016/j.fsigen.2008.07.001. PubMed DOI
Olsson I.A.S., Silva S.P.d., Townend D., Sandøe P. Protecting animals and enabling research in the European Union: An overview of development and implementation of directive 2010/63/EU. ILAR J. 2017;57:347–357. doi: 10.1093/ilar/ilw029. PubMed DOI
Hebenstreitova K., Salaba O., Trubac J., Kufnerova J., Vanek D. The Influence of Tanning Chemical Agents on DNA Degradation: A Robust Procedure for the Analysis of Tanned Animal Hide—A Pilot Study. Life. 2024;14:147. doi: 10.3390/life14010147. PubMed DOI PMC
Wu J.-H., Lei Y.-L., Fang S.-G., Wan Q.-H. Twenty-one novel tri-and tetranucleotide microsatellite loci for the Amur tiger (Panthera tigris altaica) Conserv. Genet. 2009;10:567–570. doi: 10.1007/s10592-008-9571-8. DOI
Swango K.L., Hudlow W.R., Timken M.D., Buoncristiani M.R. Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples. Forensic Sci. Int. 2007;170:35–45. doi: 10.1016/j.forsciint.2006.09.002. PubMed DOI
Holt A., Wootton S.C., Mulero J.J., Brzoska P.M., Langit E., Green R.L. Developmental validation of the Quantifiler® HP and Trio Kits for human DNA quantification in forensic samples. Forensic Sci. Int. Genet. 2016;21:145–157. doi: 10.1016/j.fsigen.2015.12.007. PubMed DOI
Holmes A.S., Houston R., Elwick K., Gangitano D., Hughes-Stamm S. Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples. Int. J. Leg. Med. 2018;132:691–701. doi: 10.1007/s00414-017-1745-9. PubMed DOI
Ewing M.M., Thompson J.M., McLaren R.S., Purpero V.M., Thomas K.J., Dobrowski P.A., DeGroot G.A., Romsos E.L., Storts D.R. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuantĘr) system. Forensic Sci. Int. Genet. 2016;23:166–177. doi: 10.1016/j.fsigen.2016.04.007. PubMed DOI
Simoes Dutra Correa H., Brescia G., Cortellini V., Cerri N., Verzeletti A. DNA quantitation and degradation assessment: A quantitative PCR protocol designed for small forensic genetics laboratories. Electrophoresis. 2020;41:714–719. doi: 10.1002/elps.201900360. PubMed DOI
Pineda G.M., Montgomery A.H., Thompson R., Indest B., Carroll M., Sinha S.K. Development and validation of InnoQuant™, a sensitive human DNA quantitation and degradation assessment method for forensic samples using high copy number mobile elements Alu and SVA. Forensic Sci. Int. Genet. 2014;13:224–235. doi: 10.1016/j.fsigen.2014.08.007. PubMed DOI
Dawnay N., Ogden R., McEwing R., Carvalho G.R., Thorpe R.S. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci. Int. 2007;173:1–6. doi: 10.1016/j.forsciint.2006.09.013. PubMed DOI
Galan M., Pagès M., Cosson J.-F. Next-generation sequencing for rodent barcoding: Species identification from fresh, degraded and environmental samples. PLoS ONE. 2012;7:e48374. doi: 10.1371/journal.pone.0048374. PubMed DOI PMC
Vankova L., Vanek D. Capillary-Electrophoresis-Based Species Barcoding of Big Cats: CR-mtDNA-Length Polymorphism. Life. 2024;14:497. doi: 10.3390/life14040497. PubMed DOI PMC
Alves C., Pereira R., Prieto L., Aler M., Amaral C.R., Arévalo C., Berardi G., Di Rocco F., Caputo M., Carmona C.H., et al. Species identification in forensic samples using the SPInDel approach: A GHEP-ISFG inter-laboratory collaborative exercise. Forensic Sci. Int. Genet. 2017;28:219–224. doi: 10.1016/j.fsigen.2017.03.003. PubMed DOI
Dule E.J., Kinimi E., Bakari G.G., Max R.A., Lyimo C.M., Mushi J.R. Species authentication in meat products sold in Kilosa District in Tanzania using HRM-enhanced DNA barcoding. J. Consum. Prot. Food Saf. 2024;20:41–52. doi: 10.1007/s00003-024-01532-6. DOI
Chang M., Kim J.-Y., Lee H., Lee E.-J., Lee W.-H., Moon S., Choe S., Choung C.M. Development of diagnostic SNP markers and a novel SNP genotyping assay for distinguishing opium poppies. Forensic Sci. Int. 2022;339:111416. doi: 10.1016/j.forsciint.2022.111416. PubMed DOI
Gouveia N., Brito P., Serra A., Balsa F., Andrade L., Bento M.S., Cunha P., Bogas V., Lopes V., Porto M. Validation of Quantifiler® Trio DNA Quantification kit in forensic samples. Forensic Sci. Int. Genet. Suppl. Ser. 2015;5:e24–e25. doi: 10.1016/j.fsigss.2015.09.010. DOI
Wang D.Y., Chang C.W., Lagacé R.E., Calandro L.M., Hennessy L.K. Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: An established multiplex assay with improved performance. J. Forensic Sci. 2012;57:453–465. doi: 10.1111/j.1556-4029.2011.01963.x. PubMed DOI
Ogden R., Linacre A. Wildlife forensic science: A review of genetic geographic origin assignment. Forensic Sci. Int. Genet. 2015;18:152–159. doi: 10.1016/j.fsigen.2015.02.008. PubMed DOI
Wheeldon T.J., Rutledge L.Y., Patterson B.R., White B.N., Wilson P.J. Y-chromosome evidence supports asymmetric dog introgression into eastern coyotes. Ecol. Evol. 2013;3:3005–3020. doi: 10.1002/ece3.693. PubMed DOI PMC
Verscheure S., Backeljau T., Desmyter S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA. ZooKeys. 2013;365:381–411. doi: 10.3897/zookeys.365.5859. PubMed DOI PMC
Berger C., Heinrich J., Berger B., Hecht W., Parson W., CaDNAP Towards forensic DNA phenotyping for predicting visible traits in dogs. Genes. 2021;12:908. doi: 10.3390/genes12060908. PubMed DOI PMC
Enenkel K.A. Zoology in Early Modern Culture: Intersections of Science, Theology, Philology, and Political and Religious Education. Brill; Leiden, The Netherlands: 2014. 2 The Species and Beyond: Classification and the Place of Hybrids in Early Modern Zoology; pp. 55–148.
Pérez-Espona S., Consortium C. Conservation-focused biobanks: A valuable resource for wildlife DNA forensics. Forensic Sci. Int. Anim. Environ. 2021;1:100017. doi: 10.1016/j.fsiae.2021.100017. DOI
Alaeddini R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 2012;6:297–305. doi: 10.1016/j.fsigen.2011.08.006. PubMed DOI
Ramón-Laca A., Soriano L., Gleeson D., Godoy J.A. A simple and effective method for obtaining mammal DNA from faeces. Wildl. Biol. 2015;21:195–203. doi: 10.2981/wlb.00096. DOI
Ruggieri J., Kemp R., Forman S., Van Eden M.E. Sample Preparation Techniques for Soil, Plant, and Animal Samples. Humana Press; Totowa, NJ, USA: 2016. Techniques for nucleic acid purification from plant, animal, and microbial samples; pp. 41–52.
Yang D., Eng B., Dudar J., Saunders S., Waye J. Removal of PCR inhibitors using silica-based spin columns: Application to ancient bones. Can. Soc. Forensic Sci. J. 1997;30:1–5. doi: 10.1080/00085030.1997.10757080. DOI
Queiroz A.P.S., Santos F., Sassaroli A., Hársi C., Monezi T., Mehnert D. Electropositive filter membrane as an alternative for the elimination of PCR inhibitors from sewage and water samples. Appl. Environ. Microbiol. 2001;67:4614–4618. doi: 10.1128/AEM.67.10.4614-4618.2001. PubMed DOI PMC
Matheson C.D., Marion T.E., Hayter S., Esau N., Fratpietro R., Vernon K.K. Removal of metal ion inhibition encountered during DNA extraction and amplification of copper-preserved archaeological bone using size exclusion chromatography. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2009;140:384–391. doi: 10.1002/ajpa.21106. PubMed DOI
Liu C., Huang D., Yang L., Wu S., Shen X., Pedersen-Bjergaard S., Huang C. Removal of polymerase chain reaction inhibitors by electromembrane extraction. Anal. Chem. 2021;93:11488–11496. doi: 10.1021/acs.analchem.1c01689. PubMed DOI
Votrubova-Dubska J., Vanek D., Zikmund J., Mestek O., Urbanova V., Brzobohata H., Brestovansky P. Efficient removal of a PCR inhibitory agent (vivianite) found on excavated bones. Forensic Sci. Int. 2016;261:8–13. doi: 10.1016/j.forsciint.2015.12.043. PubMed DOI
Teng F., Guan Y., Zhu W. A simple and effective method to overcome the inhibition of Fe to PCR. J. Microbiol. Methods. 2008;75:362–364. doi: 10.1016/j.mimet.2008.06.013. PubMed DOI
Geng T., Mathies R.A. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics. Forensic Sci. Int. Genet. 2015;14:203–209. doi: 10.1016/j.fsigen.2014.10.007. PubMed DOI
Minaguchi K., Takenaka O. Structural variations of the VWA locus in humans and comparison with non-human primates. Forensic Sci. Int. 2000;113:9–16. doi: 10.1016/S0379-0738(00)00243-7. PubMed DOI
Crouse C.A., Schumm J. Investigation of species specificity using nine PCR-based human STR systems. J. Forensic Sci. 1995;40:952–956. doi: 10.1520/JFS13862J. PubMed DOI
Ely J.J., Gonzalez D.L., Reeves-Daniel A., Stone W.H. Individual identification and paternity determination in chimpanzees (Pan troglodytes) using human short tandem repeat (STR) markers. Int. J. Primatol. 1998;19:255–271. doi: 10.1023/A:1020379531874. DOI
ENFSI D DNA Database Management. 2016. [(accessed on 24 September 2024)]. Available online: https://enfsi.eu/wp-content/uploads/2016/09/final_version_enfsi_2016_document_on_dna-database_management_0.pdf.