Capillary-Electrophoresis-Based Species Barcoding of Big Cats: CR-mtDNA-Length Polymorphism

. 2024 Apr 11 ; 14 (4) : . [epub] 20240411

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38672767

Grantová podpora
VJ01010026 Ministry of Interior Czech Republic

This study aimed to provide an overview of the methodological approach used for the species determination of big cats. The molecular system described herein employs mitochondrial DNA control region (CR-mtDNA)-length polymorphism in combination with highly sensitive and precise capillary electrophoresis. We demonstrated that the described CR-mtDNA barcoding system can be utilized for species determination where the presence of biological material from big cats is expected or used as a confirmatory test alongside Sanger or massive parallel sequencing (MPS). We have also addressed the fact that species barcoding, when based on the analysis of mtDNA targets, can be biased by nuclear inserts of the mitochondrial genome (NUMTs). The CR-mtDNA barcoding system is suitable even for problematic and challenging samples, such as hair. CR-mtDNA-length polymorphisms can also distinguish hybrids from pure breeds.

Zobrazit více v PubMed

Cheung H., Doughty H., Hinsley A., Hsu E., Lee T.M., Milner-Gulland E., Possingham H.P., Biggs D. Understanding Traditional Chinese Medicine to strengthen conservation outcomes. People Nat. 2021;3:115–128. doi: 10.1002/pan3.10166. DOI

Secretariat C., de l’Environnement M.I. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Citeseer; Princeton, NJ, USA: 2011.

Pečnikar Ž.F., Buzan E.V. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 2014;55:43–52. doi: 10.1007/s13353-013-0180-y. PubMed DOI

Valentini A., Pompanon F., Taberlet P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009;24:110–117. doi: 10.1016/j.tree.2008.09.011. PubMed DOI

Chen J., Jiang Z., Li C., Ping X., Cui S., Tang S., Chu H., Liu B. Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology. Ecol. Evol. 2015;5:1818–1825. doi: 10.1002/ece3.1457. PubMed DOI PMC

Zhou C., Gan S., Zhang J., Fan Y., Li B., Wan L., Nie J., Wang X., Chen J. Application of DNA Barcoding for the Identification of Snake Gallbladders as a Traditional Chinese Medicine. Rev. Bras. Farmacogn. 2022;32:663–668. doi: 10.1007/s43450-022-00278-2. DOI

Zhang H., Yao H., Cui L., Du H., Lin Z., Gao X., Lang X., Song J., Luo K., Shi L., et al. Application of COI-based DNA barcoding for identifying animal medical materials in the Chinese pharmacopoeia. World Sci. Technol. Mod. Tradit. Chin. Med. 2013;12:371–380.

Yang F., Ding F., Chen H., He M., Zhu S., Ma X., Jiang L., Li H. DNA barcoding for the identification and authentication of animal species in traditional medicine. Evid. Based Complement. Altern. Med. 2018;2018:5160254. doi: 10.1155/2018/5160254. PubMed DOI PMC

Xiong C., Sun W., Li J., Yao H., Shi Y., Wang P., Huang B., Shi L., Liu D., Hu Z. Identifying the species of seeds in traditional Chinese medicine using DNA barcoding. Front. Pharmacol. 2018;9:701. doi: 10.3389/fphar.2018.00701. PubMed DOI PMC

Zhu S., Liu Q., Qiu S., Dai J., Gao X. DNA barcoding: An efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin. Med. 2022;17:112. doi: 10.1186/s13020-022-00655-y. PubMed DOI PMC

Gong L., Qiu X.H., Huang J., Xu W., Bai J.Q., Zhang J., Su H., Xu C.M., Huang Z.H. Constructing a DNA barcode reference library for southern herbs in China: A resource for authentication of southern Chinese medicine. PLoS ONE. 2018;13:e0201240. doi: 10.1371/journal.pone.0201240. PubMed DOI PMC

Miao L., Xi-Wen L., Bao-Sheng L., Lu L., Yue-Ying R. Species identification of poisonous medicinal plant using DNA barcoding. Chin. J. Nat. Med. 2019;17:585–590. PubMed

Menotti-Raymond M., David V.A., Stephens J.C., Lyons L.A., O’Brien S.J. Genetic individualization of domestic cats using feline STR loci for forensic applications. J. Forensic Sci. 1997;42:1039–1051. doi: 10.1520/JFS14258J. PubMed DOI

Hellmann A.P., Rohleder U., Eichmann C., Pfeiffer I., Parson W., Schleenbecker U. A proposal for standardization in forensic canine DNA typing: Allele nomenclature of six canine-specific STR loci. J. Forensic Sci. 2006;51:274–281. doi: 10.1111/j.1556-4029.2006.00049.x. PubMed DOI

Potoczniak M.J., Chermak M., Quarino L., Tobe S.S., Conte J. Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. Int. J. Leg. Med. 2020;134:55–62. doi: 10.1007/s00414-019-02097-y. PubMed DOI

Singh A., Priyambada P., Jabin G., Singh S.K., Joshi B.D., Venkatraman C., Chandra K., Sharma L.K., Thakur M. Pangolin Indexing System: Implications in forensic surveillance of large seizures. Int. J. Leg. Med. 2020;134:1613–1618. doi: 10.1007/s00414-020-02362-5. PubMed DOI

Harper C.K. Wildlife Biodiversity Conservation. Springer; Berlin/Heidelberg, Germany: 2021. RhODIS®(The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros; pp. 463–485.

Vaněk D., Ehler E., Vaňková L. Development of DNA quantitation and STR typing systems for Panthera tigris species determination and individual identification in forensic casework. Eur. J. Environ. Sci. 2021;11:113–118. doi: 10.14712/23361964.2021.13. DOI

Wilkinson M.J., Szabo C., Ford C.S., Yarom Y., Croxford A.E., Camp A., Gooding P. Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants. Sci. Rep. 2017;7:46040. doi: 10.1038/srep46040. PubMed DOI PMC

Haider N., Nabulsi I., Al-Safadi B. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Sci. 2012;90:490–493. doi: 10.1016/j.meatsci.2011.09.013. PubMed DOI

Noikotr K., Chaveerach A., Pinthong K., Tanomtong A., Sudmoon R., Tanee T. RAPD and barcode analyses of groupers of the genus Epinephelus. Genet. Mol. Res. 2013;12:5721–5732. doi: 10.4238/2013.November.18.21. PubMed DOI

Hoffman J., Clark M., Amos W., Peck L. Widespread amplification of amplified fragment length polymorphisms (AFLPs) in marine Antarctic animals. Polar Biol. 2012;35:919–929. doi: 10.1007/s00300-011-1139-2. DOI

Lahiff S., Glennon M., Lyng J., Smith T., Maher M., Shilton N. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM) Mol. Cell. Probes. 2001;15:27–35. doi: 10.1006/mcpr.2000.0336. PubMed DOI

Park J.H., Shin S.E., Ko K.S., Park S.H. Identification of forensically important Calliphoridae and Sarcophagidae species collected in Korea using SNaPshot multiplex system targeting the cytochrome c oxidase subunit i gene. BioMed Res. Int. 2018;2018:2953892. doi: 10.1155/2018/2953892. PubMed DOI PMC

Denyingyhot A., Phraephaisarn C., Vesaratchavest M., Dahlan W., Keeratipibul S. A new tool for quality control to monitor contamination of six non-halal meats in food industry by multiplex high-resolution melting analysis (HRMA) NFS J. 2021;25:31–40. doi: 10.1016/j.nfs.2021.09.002. DOI

Friedenberger A., Doyle C., Couillard L., Kyle C.J. The bear necessities: A sensitive qPCR assay for bear DNA detection from bile and derived products to complement wildlife forensic enforcement. Forensic Sci. Int. Genet. 2023;67:102935. doi: 10.1016/j.fsigen.2023.102935. PubMed DOI

Mori C., Matsumura S. Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int. J. Leg. Med. 2021;136:1–12. doi: 10.1007/s00414-021-02711-y. PubMed DOI

Pereira F., Carneiro J., Matthiesen R., van Asch B., Pinto N., Gusmao L., Amorim A. Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Res. 2010;38:e203. doi: 10.1093/nar/gkq865. PubMed DOI PMC

Pun K.M., Albrecht C., Castella V., Fumagalli L. Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis. 2009;30:1008–1014. doi: 10.1002/elps.200800365. PubMed DOI

Vankova L., Vanek D. DNA-based identification of big cats and traditional Chinese medicine artifacts in the Czech Republic. Forensic Sci. Int. Genet. Suppl. Ser. 2022;8:122–124. doi: 10.1016/j.fsigss.2022.10.005. DOI

Warchol G.L. Transnational Environmental Crime. Routledge; London, UK: 2017. The transnational illegal wildlife trade; pp. 379–396.

Petrossian G.A., Pires S.F., van Uhm D.P. An overview of seized illegal wildlife entering the United States. Glob. Crime. 2016;17:181–201. doi: 10.1080/17440572.2016.1152548. DOI

Bagatharia S.B., Joshi M.N., Pandya R.V., Pandit A.S., Patel R.P., Desai S.M., Sharma A., Panchal O., Jasmani F.P., Saxena A.K. Complete mitogenome of asiatic lion resolves phylogenetic status within Panthera. BMC Genom. 2013;14:572. doi: 10.1186/1471-2164-14-572. PubMed DOI PMC

Lopez J.V., Cevario S., O’Brien S.J. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics. 1996;33:229–246. doi: 10.1006/geno.1996.0188. PubMed DOI

Song H., Buhay J.E., Whiting M.F., Crandall K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA. 2008;105:13486–13491. doi: 10.1073/pnas.0803076105. PubMed DOI PMC

Zhang D.-X., Hewitt G.M. Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol. Evol. 1996;11:247–251. doi: 10.1016/0169-5347(96)10031-8. PubMed DOI

Shankaranarayanan P., Banerjee M., Kacker R.K., Aggarwal R.K., Singh L. Genetic variation in Asiatic lions and Indian tigers. Electrophoresis. 1997;18:1693–1700. doi: 10.1002/elps.1150180938. PubMed DOI

Webster L.M., Prigge T.-L., Frankham G.J. A guide for the validation of DNA based species identification in forensic casework. Forensic Sci. Int. Anim. Environ. 2024;5:100080. doi: 10.1016/j.fsiae.2023.100080. DOI

Ratnasingham S., Hebert P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org) Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC

Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2012;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC

Mori C., Matsumura S. Current issues for mammalian species identification in forensic science: A review. Int. J. Leg. Med. 2021;135:3–12. doi: 10.1007/s00414-020-02341-w. PubMed DOI

Egeland T., Salas A. A statistical framework for the interpretation of mtDNA mixtures: Forensic and medical applications. PLoS ONE. 2011;6:e26723. doi: 10.1371/journal.pone.0026723. PubMed DOI PMC

Mandape S.N., Smart U., King J.L., Muenzler M., Kapema K.B., Budowle B., Woerner A.E. MMDIT: A tool for the deconvolution and interpretation of mitochondrial DNA mixtures. Forensic Sci. Int. Genet. 2021;55:102568. doi: 10.1016/j.fsigen.2021.102568. PubMed DOI

Holland M.M., McQuillan M.R., O’Hanlon K.A. Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat. Med. J. 2011;52:299–313. doi: 10.3325/cmj.2011.52.299. PubMed DOI PMC

Kim H., Erlich H.A., Calloway C.D. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat. Med. J. 2015;56:208–217. doi: 10.3325/cmj.2015.56.208. PubMed DOI PMC

Churchill J.D., Stoljarova M., King J.L., Budowle B. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int. J. Leg. Med. 2018;132:1263–1272. doi: 10.1007/s00414-018-1799-3. PubMed DOI

Wisner M., Erlich H., Shih S., Calloway C. Resolution of mitochondrial DNA mixtures using a probe capture next generation sequencing system and phylogenetic-based software. Forensic Sci. Int. Genet. 2021;53:102531. doi: 10.1016/j.fsigen.2021.102531. PubMed DOI

Schultz J.A., Hebert P.D. Do pseudogenes pose a problem for metabarcoding marine animal communities? Mol. Ecol. Resour. 2022;22:2897–2914. doi: 10.1111/1755-0998.13667. PubMed DOI

Cruaud P., Rasplus J.-Y., Rodriguez L.J., Cruaud A. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci. Rep. 2017;7:41948. doi: 10.1038/srep41948. PubMed DOI PMC

Gross R., Nilsson J., Schmitz M. A new species-specific nuclear DNA marker for identification of hybrids between Atlantic salmon and brown trout. J. Fish Biol. 1996;49:537–540.

Van de Putte A.P., Van Houdt J., Maes G., Janko K., Koubbi P., Rock J., Volckaert F. Species identification in the trematomid family using nuclear genetic markers. Polar Biol. 2009;32:1731–1741. doi: 10.1007/s00300-009-0672-8. DOI

Purugganan M., Wessler S. Transposon signatures: Species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol. Ecol. 1995;4:265–270. doi: 10.1111/j.1365-294X.1995.tb00218.x. PubMed DOI

Bosmali I., Lagiotis G., Stavridou E., Haider N., Osathanunkul M., Pasentsis K., Madesis P. Novel authentication approach for coffee beans and the brewed beverage using a nuclear-based species-specific marker coupled with high resolution melting analysis. LWT. 2021;137:110336. doi: 10.1016/j.lwt.2020.110336. DOI

Eberle J., Ahrens D., Mayer C., Niehuis O., Misof B. A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends Ecol. Evol. 2020;35:336–345. doi: 10.1016/j.tree.2019.12.003. PubMed DOI

Dietz L., Eberle J., Mayer C., Kukowka S., Bohacz C., Baur H., Espeland M., Huber B.A., Hutter C., Mengual X. Standardized nuclear markers improve and homogenize species delimitation in Metazoa. Methods Ecol. Evol. 2023;14:543–555. doi: 10.1111/2041-210X.14041. DOI

Pereira S.L., Baker A.J. Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: Implications for molecular inference of population history and phylogenetics. BMC Evol. Biol. 2004;4:17. doi: 10.1186/1471-2148-4-17. PubMed DOI PMC

Nacer D.F., do Amaral F.R. Striking pseudogenization in avian phylogenetics: Numts are large and common in falcons. Mol. Phylogenetics Evol. 2017;115:1–6. doi: 10.1016/j.ympev.2017.07.002. PubMed DOI

Richly E., Leister D. NUMTs in sequenced eukaryotic genomes. Mol. Biol. Evol. 2004;21:1081–1084. doi: 10.1093/molbev/msh110. PubMed DOI

Hazkani-Covo E., Zeller R.M., Martin W. Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6:e1000834. doi: 10.1371/journal.pgen.1000834. PubMed DOI PMC

Cihlar J.C., Strobl C., Lagacé R., Muenzler M., Parson W., Budowle B. Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel. Mitochondrion. 2020;55:122–133. doi: 10.1016/j.mito.2020.09.001. PubMed DOI

Soto-Calderón I.D., Clark N.J., Wildschutte J.V.H., DiMattio K., Jensen-Seaman M.I., Anthony N.M. Identification of species-specific nuclear insertions of mitochondrial DNA (numts) in gorillas and their potential as population genetic markers. Mol. Phylogenetics Evol. 2014;81:61–70. doi: 10.1016/j.ympev.2014.08.018. PubMed DOI PMC

Wolff J.N., Shearman D.C., Brooks R.C., Ballard J.W. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts) PLoS ONE. 2012;7:e37142. doi: 10.1371/journal.pone.0037142. PubMed DOI PMC

Morgan K.I., Ewart K.M., Nguyen T.Q., Sitam F.T., Ouitavon K., Lightson A.L., Kotze A., McEwing R. Avoiding common numts to provide reliable species identification for tiger parts. Forensic Sci. Int. Rep. 2021;3:100166. doi: 10.1016/j.fsir.2020.100166. DOI

Kunz D., Tay W.T., Elfekih S., Gordon K.H.J., De Barro P.J. Take out the rubbish–Removing NUMTs and pseudogenes from the Bemisia tabaci cryptic species mtCOI database. bioRxiv. 2019 doi: 10.1101/724765. DOI

Ožana S., Dolný A., Pánek T. Nuclear copies of mitochondrial DNA as a potential problem for phylogenetic and population genetic studies of Odonata. Syst. Entomol. 2022;47:591–602. doi: 10.1111/syen.12550. DOI

Marshall C., Parson W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci. Int. Genet. 2021;53:102497. doi: 10.1016/j.fsigen.2021.102497. PubMed DOI

Rossel S., Uhlenkott K., Peters J., Vink A., Arbizu P.M. Evaluating species richness using proteomic fingerprinting and DNA barcoding—A case study on meiobenthic copepods from the Clarion Clipperton Fracture Zone. Mar. Biodivers. 2022;52:67. doi: 10.1007/s12526-022-01307-y. DOI

Raupach M.J., Amann R., Wheeler Q.D., Roos C. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 2016;16:1–12. doi: 10.1007/s13127-015-0234-6. DOI

Davidson N.B., Koch N.I., Sarsby J., Jones E., Hurst J.L., Beynon R.J. Rapid identification of species, sex and maturity by mass spectrometric analysis of animal faeces. BMC Biol. 2019;17:66. doi: 10.1186/s12915-019-0686-9. PubMed DOI PMC

Zhong Y., Wang H., Wei Q., Cao R., Zhang H., He Y., Wang L. Combining DNA barcoding and HPLC fingerprints to trace species of an important traditional Chinese medicine fritillariae bulbus. Molecules. 2019;24:3269. doi: 10.3390/molecules24183269. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...