Capillary-Electrophoresis-Based Species Barcoding of Big Cats: CR-mtDNA-Length Polymorphism
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VJ01010026
Ministry of Interior Czech Republic
PubMed
38672767
PubMed Central
PMC11051001
DOI
10.3390/life14040497
PII: life14040497
Knihovny.cz E-zdroje
- Klíčová slova
- CITES, DNA barcoding, DNA identification, NUMTs, species identification, traditional Chinese medicine,
- Publikační typ
- časopisecké články MeSH
This study aimed to provide an overview of the methodological approach used for the species determination of big cats. The molecular system described herein employs mitochondrial DNA control region (CR-mtDNA)-length polymorphism in combination with highly sensitive and precise capillary electrophoresis. We demonstrated that the described CR-mtDNA barcoding system can be utilized for species determination where the presence of biological material from big cats is expected or used as a confirmatory test alongside Sanger or massive parallel sequencing (MPS). We have also addressed the fact that species barcoding, when based on the analysis of mtDNA targets, can be biased by nuclear inserts of the mitochondrial genome (NUMTs). The CR-mtDNA barcoding system is suitable even for problematic and challenging samples, such as hair. CR-mtDNA-length polymorphisms can also distinguish hybrids from pure breeds.
Bulovka University Hospital 180 81 Prague Czech Republic
Forensic DNA Service Budinova 2 180 81 Prague Czech Republic
Institute for Environmental Sciences Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Cheung H., Doughty H., Hinsley A., Hsu E., Lee T.M., Milner-Gulland E., Possingham H.P., Biggs D. Understanding Traditional Chinese Medicine to strengthen conservation outcomes. People Nat. 2021;3:115–128. doi: 10.1002/pan3.10166. DOI
Secretariat C., de l’Environnement M.I. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Citeseer; Princeton, NJ, USA: 2011.
Pečnikar Ž.F., Buzan E.V. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 2014;55:43–52. doi: 10.1007/s13353-013-0180-y. PubMed DOI
Valentini A., Pompanon F., Taberlet P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009;24:110–117. doi: 10.1016/j.tree.2008.09.011. PubMed DOI
Chen J., Jiang Z., Li C., Ping X., Cui S., Tang S., Chu H., Liu B. Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology. Ecol. Evol. 2015;5:1818–1825. doi: 10.1002/ece3.1457. PubMed DOI PMC
Zhou C., Gan S., Zhang J., Fan Y., Li B., Wan L., Nie J., Wang X., Chen J. Application of DNA Barcoding for the Identification of Snake Gallbladders as a Traditional Chinese Medicine. Rev. Bras. Farmacogn. 2022;32:663–668. doi: 10.1007/s43450-022-00278-2. DOI
Zhang H., Yao H., Cui L., Du H., Lin Z., Gao X., Lang X., Song J., Luo K., Shi L., et al. Application of COI-based DNA barcoding for identifying animal medical materials in the Chinese pharmacopoeia. World Sci. Technol. Mod. Tradit. Chin. Med. 2013;12:371–380.
Yang F., Ding F., Chen H., He M., Zhu S., Ma X., Jiang L., Li H. DNA barcoding for the identification and authentication of animal species in traditional medicine. Evid. Based Complement. Altern. Med. 2018;2018:5160254. doi: 10.1155/2018/5160254. PubMed DOI PMC
Xiong C., Sun W., Li J., Yao H., Shi Y., Wang P., Huang B., Shi L., Liu D., Hu Z. Identifying the species of seeds in traditional Chinese medicine using DNA barcoding. Front. Pharmacol. 2018;9:701. doi: 10.3389/fphar.2018.00701. PubMed DOI PMC
Zhu S., Liu Q., Qiu S., Dai J., Gao X. DNA barcoding: An efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin. Med. 2022;17:112. doi: 10.1186/s13020-022-00655-y. PubMed DOI PMC
Gong L., Qiu X.H., Huang J., Xu W., Bai J.Q., Zhang J., Su H., Xu C.M., Huang Z.H. Constructing a DNA barcode reference library for southern herbs in China: A resource for authentication of southern Chinese medicine. PLoS ONE. 2018;13:e0201240. doi: 10.1371/journal.pone.0201240. PubMed DOI PMC
Miao L., Xi-Wen L., Bao-Sheng L., Lu L., Yue-Ying R. Species identification of poisonous medicinal plant using DNA barcoding. Chin. J. Nat. Med. 2019;17:585–590. PubMed
Menotti-Raymond M., David V.A., Stephens J.C., Lyons L.A., O’Brien S.J. Genetic individualization of domestic cats using feline STR loci for forensic applications. J. Forensic Sci. 1997;42:1039–1051. doi: 10.1520/JFS14258J. PubMed DOI
Hellmann A.P., Rohleder U., Eichmann C., Pfeiffer I., Parson W., Schleenbecker U. A proposal for standardization in forensic canine DNA typing: Allele nomenclature of six canine-specific STR loci. J. Forensic Sci. 2006;51:274–281. doi: 10.1111/j.1556-4029.2006.00049.x. PubMed DOI
Potoczniak M.J., Chermak M., Quarino L., Tobe S.S., Conte J. Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. Int. J. Leg. Med. 2020;134:55–62. doi: 10.1007/s00414-019-02097-y. PubMed DOI
Singh A., Priyambada P., Jabin G., Singh S.K., Joshi B.D., Venkatraman C., Chandra K., Sharma L.K., Thakur M. Pangolin Indexing System: Implications in forensic surveillance of large seizures. Int. J. Leg. Med. 2020;134:1613–1618. doi: 10.1007/s00414-020-02362-5. PubMed DOI
Harper C.K. Wildlife Biodiversity Conservation. Springer; Berlin/Heidelberg, Germany: 2021. RhODIS®(The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros; pp. 463–485.
Vaněk D., Ehler E., Vaňková L. Development of DNA quantitation and STR typing systems for Panthera tigris species determination and individual identification in forensic casework. Eur. J. Environ. Sci. 2021;11:113–118. doi: 10.14712/23361964.2021.13. DOI
Wilkinson M.J., Szabo C., Ford C.S., Yarom Y., Croxford A.E., Camp A., Gooding P. Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants. Sci. Rep. 2017;7:46040. doi: 10.1038/srep46040. PubMed DOI PMC
Haider N., Nabulsi I., Al-Safadi B. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Sci. 2012;90:490–493. doi: 10.1016/j.meatsci.2011.09.013. PubMed DOI
Noikotr K., Chaveerach A., Pinthong K., Tanomtong A., Sudmoon R., Tanee T. RAPD and barcode analyses of groupers of the genus Epinephelus. Genet. Mol. Res. 2013;12:5721–5732. doi: 10.4238/2013.November.18.21. PubMed DOI
Hoffman J., Clark M., Amos W., Peck L. Widespread amplification of amplified fragment length polymorphisms (AFLPs) in marine Antarctic animals. Polar Biol. 2012;35:919–929. doi: 10.1007/s00300-011-1139-2. DOI
Lahiff S., Glennon M., Lyng J., Smith T., Maher M., Shilton N. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM) Mol. Cell. Probes. 2001;15:27–35. doi: 10.1006/mcpr.2000.0336. PubMed DOI
Park J.H., Shin S.E., Ko K.S., Park S.H. Identification of forensically important Calliphoridae and Sarcophagidae species collected in Korea using SNaPshot multiplex system targeting the cytochrome c oxidase subunit i gene. BioMed Res. Int. 2018;2018:2953892. doi: 10.1155/2018/2953892. PubMed DOI PMC
Denyingyhot A., Phraephaisarn C., Vesaratchavest M., Dahlan W., Keeratipibul S. A new tool for quality control to monitor contamination of six non-halal meats in food industry by multiplex high-resolution melting analysis (HRMA) NFS J. 2021;25:31–40. doi: 10.1016/j.nfs.2021.09.002. DOI
Friedenberger A., Doyle C., Couillard L., Kyle C.J. The bear necessities: A sensitive qPCR assay for bear DNA detection from bile and derived products to complement wildlife forensic enforcement. Forensic Sci. Int. Genet. 2023;67:102935. doi: 10.1016/j.fsigen.2023.102935. PubMed DOI
Mori C., Matsumura S. Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int. J. Leg. Med. 2021;136:1–12. doi: 10.1007/s00414-021-02711-y. PubMed DOI
Pereira F., Carneiro J., Matthiesen R., van Asch B., Pinto N., Gusmao L., Amorim A. Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Res. 2010;38:e203. doi: 10.1093/nar/gkq865. PubMed DOI PMC
Pun K.M., Albrecht C., Castella V., Fumagalli L. Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis. 2009;30:1008–1014. doi: 10.1002/elps.200800365. PubMed DOI
Vankova L., Vanek D. DNA-based identification of big cats and traditional Chinese medicine artifacts in the Czech Republic. Forensic Sci. Int. Genet. Suppl. Ser. 2022;8:122–124. doi: 10.1016/j.fsigss.2022.10.005. DOI
Warchol G.L. Transnational Environmental Crime. Routledge; London, UK: 2017. The transnational illegal wildlife trade; pp. 379–396.
Petrossian G.A., Pires S.F., van Uhm D.P. An overview of seized illegal wildlife entering the United States. Glob. Crime. 2016;17:181–201. doi: 10.1080/17440572.2016.1152548. DOI
Bagatharia S.B., Joshi M.N., Pandya R.V., Pandit A.S., Patel R.P., Desai S.M., Sharma A., Panchal O., Jasmani F.P., Saxena A.K. Complete mitogenome of asiatic lion resolves phylogenetic status within Panthera. BMC Genom. 2013;14:572. doi: 10.1186/1471-2164-14-572. PubMed DOI PMC
Lopez J.V., Cevario S., O’Brien S.J. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics. 1996;33:229–246. doi: 10.1006/geno.1996.0188. PubMed DOI
Song H., Buhay J.E., Whiting M.F., Crandall K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA. 2008;105:13486–13491. doi: 10.1073/pnas.0803076105. PubMed DOI PMC
Zhang D.-X., Hewitt G.M. Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol. Evol. 1996;11:247–251. doi: 10.1016/0169-5347(96)10031-8. PubMed DOI
Shankaranarayanan P., Banerjee M., Kacker R.K., Aggarwal R.K., Singh L. Genetic variation in Asiatic lions and Indian tigers. Electrophoresis. 1997;18:1693–1700. doi: 10.1002/elps.1150180938. PubMed DOI
Webster L.M., Prigge T.-L., Frankham G.J. A guide for the validation of DNA based species identification in forensic casework. Forensic Sci. Int. Anim. Environ. 2024;5:100080. doi: 10.1016/j.fsiae.2023.100080. DOI
Ratnasingham S., Hebert P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org) Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2012;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC
Mori C., Matsumura S. Current issues for mammalian species identification in forensic science: A review. Int. J. Leg. Med. 2021;135:3–12. doi: 10.1007/s00414-020-02341-w. PubMed DOI
Egeland T., Salas A. A statistical framework for the interpretation of mtDNA mixtures: Forensic and medical applications. PLoS ONE. 2011;6:e26723. doi: 10.1371/journal.pone.0026723. PubMed DOI PMC
Mandape S.N., Smart U., King J.L., Muenzler M., Kapema K.B., Budowle B., Woerner A.E. MMDIT: A tool for the deconvolution and interpretation of mitochondrial DNA mixtures. Forensic Sci. Int. Genet. 2021;55:102568. doi: 10.1016/j.fsigen.2021.102568. PubMed DOI
Holland M.M., McQuillan M.R., O’Hanlon K.A. Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat. Med. J. 2011;52:299–313. doi: 10.3325/cmj.2011.52.299. PubMed DOI PMC
Kim H., Erlich H.A., Calloway C.D. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat. Med. J. 2015;56:208–217. doi: 10.3325/cmj.2015.56.208. PubMed DOI PMC
Churchill J.D., Stoljarova M., King J.L., Budowle B. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int. J. Leg. Med. 2018;132:1263–1272. doi: 10.1007/s00414-018-1799-3. PubMed DOI
Wisner M., Erlich H., Shih S., Calloway C. Resolution of mitochondrial DNA mixtures using a probe capture next generation sequencing system and phylogenetic-based software. Forensic Sci. Int. Genet. 2021;53:102531. doi: 10.1016/j.fsigen.2021.102531. PubMed DOI
Schultz J.A., Hebert P.D. Do pseudogenes pose a problem for metabarcoding marine animal communities? Mol. Ecol. Resour. 2022;22:2897–2914. doi: 10.1111/1755-0998.13667. PubMed DOI
Cruaud P., Rasplus J.-Y., Rodriguez L.J., Cruaud A. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci. Rep. 2017;7:41948. doi: 10.1038/srep41948. PubMed DOI PMC
Gross R., Nilsson J., Schmitz M. A new species-specific nuclear DNA marker for identification of hybrids between Atlantic salmon and brown trout. J. Fish Biol. 1996;49:537–540.
Van de Putte A.P., Van Houdt J., Maes G., Janko K., Koubbi P., Rock J., Volckaert F. Species identification in the trematomid family using nuclear genetic markers. Polar Biol. 2009;32:1731–1741. doi: 10.1007/s00300-009-0672-8. DOI
Purugganan M., Wessler S. Transposon signatures: Species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol. Ecol. 1995;4:265–270. doi: 10.1111/j.1365-294X.1995.tb00218.x. PubMed DOI
Bosmali I., Lagiotis G., Stavridou E., Haider N., Osathanunkul M., Pasentsis K., Madesis P. Novel authentication approach for coffee beans and the brewed beverage using a nuclear-based species-specific marker coupled with high resolution melting analysis. LWT. 2021;137:110336. doi: 10.1016/j.lwt.2020.110336. DOI
Eberle J., Ahrens D., Mayer C., Niehuis O., Misof B. A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends Ecol. Evol. 2020;35:336–345. doi: 10.1016/j.tree.2019.12.003. PubMed DOI
Dietz L., Eberle J., Mayer C., Kukowka S., Bohacz C., Baur H., Espeland M., Huber B.A., Hutter C., Mengual X. Standardized nuclear markers improve and homogenize species delimitation in Metazoa. Methods Ecol. Evol. 2023;14:543–555. doi: 10.1111/2041-210X.14041. DOI
Pereira S.L., Baker A.J. Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: Implications for molecular inference of population history and phylogenetics. BMC Evol. Biol. 2004;4:17. doi: 10.1186/1471-2148-4-17. PubMed DOI PMC
Nacer D.F., do Amaral F.R. Striking pseudogenization in avian phylogenetics: Numts are large and common in falcons. Mol. Phylogenetics Evol. 2017;115:1–6. doi: 10.1016/j.ympev.2017.07.002. PubMed DOI
Richly E., Leister D. NUMTs in sequenced eukaryotic genomes. Mol. Biol. Evol. 2004;21:1081–1084. doi: 10.1093/molbev/msh110. PubMed DOI
Hazkani-Covo E., Zeller R.M., Martin W. Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6:e1000834. doi: 10.1371/journal.pgen.1000834. PubMed DOI PMC
Cihlar J.C., Strobl C., Lagacé R., Muenzler M., Parson W., Budowle B. Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel. Mitochondrion. 2020;55:122–133. doi: 10.1016/j.mito.2020.09.001. PubMed DOI
Soto-Calderón I.D., Clark N.J., Wildschutte J.V.H., DiMattio K., Jensen-Seaman M.I., Anthony N.M. Identification of species-specific nuclear insertions of mitochondrial DNA (numts) in gorillas and their potential as population genetic markers. Mol. Phylogenetics Evol. 2014;81:61–70. doi: 10.1016/j.ympev.2014.08.018. PubMed DOI PMC
Wolff J.N., Shearman D.C., Brooks R.C., Ballard J.W. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts) PLoS ONE. 2012;7:e37142. doi: 10.1371/journal.pone.0037142. PubMed DOI PMC
Morgan K.I., Ewart K.M., Nguyen T.Q., Sitam F.T., Ouitavon K., Lightson A.L., Kotze A., McEwing R. Avoiding common numts to provide reliable species identification for tiger parts. Forensic Sci. Int. Rep. 2021;3:100166. doi: 10.1016/j.fsir.2020.100166. DOI
Kunz D., Tay W.T., Elfekih S., Gordon K.H.J., De Barro P.J. Take out the rubbish–Removing NUMTs and pseudogenes from the Bemisia tabaci cryptic species mtCOI database. bioRxiv. 2019 doi: 10.1101/724765. DOI
Ožana S., Dolný A., Pánek T. Nuclear copies of mitochondrial DNA as a potential problem for phylogenetic and population genetic studies of Odonata. Syst. Entomol. 2022;47:591–602. doi: 10.1111/syen.12550. DOI
Marshall C., Parson W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci. Int. Genet. 2021;53:102497. doi: 10.1016/j.fsigen.2021.102497. PubMed DOI
Rossel S., Uhlenkott K., Peters J., Vink A., Arbizu P.M. Evaluating species richness using proteomic fingerprinting and DNA barcoding—A case study on meiobenthic copepods from the Clarion Clipperton Fracture Zone. Mar. Biodivers. 2022;52:67. doi: 10.1007/s12526-022-01307-y. DOI
Raupach M.J., Amann R., Wheeler Q.D., Roos C. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 2016;16:1–12. doi: 10.1007/s13127-015-0234-6. DOI
Davidson N.B., Koch N.I., Sarsby J., Jones E., Hurst J.L., Beynon R.J. Rapid identification of species, sex and maturity by mass spectrometric analysis of animal faeces. BMC Biol. 2019;17:66. doi: 10.1186/s12915-019-0686-9. PubMed DOI PMC
Zhong Y., Wang H., Wei Q., Cao R., Zhang H., He Y., Wang L. Combining DNA barcoding and HPLC fingerprints to trace species of an important traditional Chinese medicine fritillariae bulbus. Molecules. 2019;24:3269. doi: 10.3390/molecules24183269. PubMed DOI PMC