An automated DIY framework for experimental evolution of Pseudomonas putida
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33047876
PubMed Central
PMC8601172
DOI
10.1111/1751-7915.13678
Knihovny.cz E-zdroje
- MeSH
- bioreaktory MeSH
- metabolické inženýrství MeSH
- Pseudomonas putida * genetika MeSH
- uhlík MeSH
- xylosa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík MeSH
- xylosa MeSH
Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
Zobrazit více v PubMed
Amanullah, A. , Otero, J.M. , Mikola, M. , Hsu, A. , Zhang, J. , Aunins, J. , et al. (2010) Novel micro‐bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed‐batch CHO cultures. Biotechnol Bioeng 106: 57–67. PubMed
Auerbach, I.D. , Sorensen, C. , Hansma, H.G. , and Holden, P.A. (2000) Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol 182: 3809–3815. PubMed PMC
Bergenholm, D. , Liu, G. , Hansson, D. , and Nielsen, J. (2019) Construction of mini‐chemostats for high‐throughput strain characterization. Biotechnol Bioeng 116: 1029–1038. PubMed
Chen, H. , Liu, J. , Chang, X. , Chen, D. , Xue, Y. , Liu, P. , et al. (2017) A review on the pretreatment of lignocellulose for high‐value chemicals. Fuel Process Technol 160: 196–206.
Cheng, K.K. , Lee, B.S. , Masuda, T. , Ito, T. , Ikeda, K. , Hirayama, A. , et al. (2014) Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5: 3233. PubMed
Collado‐Vides, J. , Magasanik, B. , and Gralla, J.D. (1991) Control site location and transcriptional regulation in Escherichia coli . Microbiol Mol Biol Rev 55: 371–394. PubMed PMC
Davis, E.O. , and Henderson, P.J. (1987) The cloning and DNA sequence of the gene xylE for xylose‐proton symport in Escherichia coli K12. J Biol Chem 262: 13928–13932. PubMed
Dragosits, M. , and Mattanovich, D. (2013) Adaptive laboratory evolution–principles and applications for biotechnology. Microb Cell Fact 12: 64. PubMed PMC
Dvořák, P. , and de Lorenzo, V. (2018) Refactoring the upper sugar metabolism of Pseudomonas putida for co‐utilization of cellobiose, xylose, and glucose. Metab Eng 48: 94–108. PubMed
Elmore, J.R. , Dexter, G.N. , Salvachúa, D. , O'Brien, M. , Klingeman, D.M. , Gorday, K. , et al. (2020) Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: glucose, xylose, arabinose, p‐coumaric acid and acetic acid. Metab Eng 62: 62–71. PubMed
Espeso, D.R. , Martínez‐García, E. , Carpio, A. , and de Lorenzo, V. (2018) Dynamics of Pseudomonas putida biofilms in an upscale experimental framework. J Ind Microbiol Biotechnol 45: 899–911. PubMed
Espinosa‐Urgel, M. , Salido, A. , and Ramos, J.L. (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182: 2363–2369. PubMed PMC
Kampers, L.F.C. , van Heck, R.G.A. , Donati, S. , Saccenti, E. , Volkers, R.J.M. , Schaap, P.J. , et al. (2019) In silico‐guided engineering of Pseudomonas putida towards growth under micro‐oxic conditions. Microb Cell Fact 18: 179. PubMed PMC
Kavvas, E.S. , Antoniewicz, M. , Long, C. , Ding, Y. , Monk, J.M. , Palsson, B.O. , and Feist, A.M. (2020) Laboratory evolution of multiple E. coli strains reveals unifying principles of adaptation but diversity in driving genotypes. bioRxiv 2020.2005.2019.104992.
LaCroix, R.A. , Palsson, B.O. , and Feist, A.M. (2017) A model for designing adaptive laboratory evolution experiments. Appl Environ Microbiol 83: e03115‐03116. PubMed PMC
de Lorenzo, V. , and Schmidt, M. (2017) The do‐it‐yourself movement as a source of innovation in biotechnology ‐ and much more. Microb Biotechnol 10: 517–519. PubMed PMC
Madej, M.G. , Sun, L. , Yan, N. , and Kaback, H.R. (2014) Functional architecture of MFS D‐glucose transporters. Proc Natl Acad Sci USA 111: E719–E727. PubMed PMC
Mahr, R. , Gätgens, C. , Gätgens, J. , Polen, T. , Kalinowski, J. , and Frunzke, J. (2015) Biosensor‐driven adaptive laboratory evolution of l‐valine production in Corynebacterium glutamicum . Metab Eng 32: 184–194. PubMed
Marlière, P. , Patrouix, J. , Döring, V. , Herdewijn, P. , Tricot, S. , Cruveiller, S. , et al. (2011) Chemical evolution of a bacterium's genome. Angew Chem Int Ed Engl 50: 7109–7114. PubMed
Martínez‐García, E. , Aparicio, T. , de Lorenzo, V. , and Nikel, P.I. (2014a) New transposon tools tailored for metabolic engineering of Gram‐negative microbial cell factories. Front Bioeng Biotechnol 2: 46. PubMed PMC
Martínez‐García, E. , Nikel, P.I. , Aparicio, T. , and de Lorenzo, V. (2014b) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13: 159. PubMed PMC
McGeachy, A.M. , Meacham, Z.A. , and Ingolia, N.T. (2019) An accessible continuous‐culture turbidostat for pooled analysis of complex libraries. ACS Synth Biol 8: 844–856. PubMed
Meysman, P. , Collado‐Vides, J. , Morett, E. , Viola, R. , Engelen, K. , and Laukens, K. (2014) Structural properties of prokaryotic promoter regions correlate with functional features. PLoS One 9: e88717. PubMed PMC
Moe‐Behrens, G.H. , Davis, R. , and Haynes, K.A. (2013) Preparing synthetic biology for the world. Front Microbiol 4: 5. PubMed PMC
Nikel, P.I. , Chavarría, M. , Danchin, A. , and de Lorenzo, V. (2016) From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34: 20–29. PubMed
Nikel, P.I. , and de Lorenzo, V. (2013) Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1, 3‐dichloroprop‐1‐ene. Metab Eng 15: 98–112. PubMed
Nikel, P.I. , and de Lorenzo, V. (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans‐metabolism. Metab Eng 50: 142–155. PubMed
Nikel, P.I. , Martínez‐García, E. , and de Lorenzo, V. (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12: 368–379. PubMed
Portnoy, V.A. , Bezdan, D. , and Zengler, K. (2011) Adaptive laboratory evolution–harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22: 590–594. PubMed
Sassi, H. , Nguyen, T.M. , Telek, S. , Gosset, G. , Grünberger, A. , and Delvigne, F. (2019) Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram‐negative bacteria. Microb Biotechnol 12: 1064–1075. PubMed PMC
Sun, L. , Zeng, X. , Yan, C. , Sun, X. , Gong, X. , Rao, Y. , and Yan, N. (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1‐4. Nature 490: 361–366. PubMed
Tolker‐Nielsen, T. , Brinch, U.C. , Ragas, P.C. , Andersen, J.B. , Jacobsen, C.S. , and Molin, S. (2000) Development and dynamics of Pseudomonassp. biofilms. J Bacteriol 182: 6482–6489. PubMed PMC
Wong, B.G. , Mancuso, C.P. , Kiriakov, S. , Bashor, C.J. , and Khalil, A.S. (2018) Precise, automated control of conditions for high‐throughput growth of yeast and bacteria with eVOLVER. Nat Biotechnol 36: 614–623. PubMed PMC
Wytock, T.P. , Fiebig, A. , Willett, J.W. , Herrou, J. , Fergin, A. , Motter, A.E. , and Crosson, S. (2018) Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 14: e1007284. PubMed PMC