Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-12505S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
38531855
PubMed Central
PMC10965963
DOI
10.1038/s41467-024-46812-9
PII: 10.1038/s41467-024-46812-9
Knihovny.cz E-zdroje
- MeSH
- metabolické inženýrství MeSH
- pentózofosfátový cyklus MeSH
- Pseudomonas putida * genetika MeSH
- transaldolasa genetika MeSH
- xylosa * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transaldolasa MeSH
- xylosa * MeSH
To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.
APC Microbiome Ireland University College Cork College Rd Cork T12 YT20 Ireland
Institute of Applied Microbiology RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
School of Microbiology University College Cork College Rd Cork T12 Y337 Ireland
Zobrazit více v PubMed
Narisetty V, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain. Energy Fuels. 2021;6:29–65. doi: 10.1039/D1SE00927C. PubMed DOI PMC
Baral NR, et al. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain. Chem. Eng. 2019;7:9062–9079. doi: 10.1021/acssuschemeng.9b01229. DOI
Sun L, et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 2021;12:4975. doi: 10.1038/s41467-021-25241-y. PubMed DOI PMC
Ling C, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 2022;13:4925. doi: 10.1038/s41467-022-32296-y. PubMed DOI PMC
Taha M, et al. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 2016;38:190–197. doi: 10.1016/j.copbio.2016.02.012. PubMed DOI
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008;6:613–624. doi: 10.1038/nrmicro1932. PubMed DOI
Volk MJ, et al. Metabolic engineering: methodologies and applications. Chem. Rev. 2022;123:5521–5570. doi: 10.1021/acs.chemrev.2c00403. PubMed DOI
Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb. Cell Factories. 2013;12:64. doi: 10.1186/1475-2859-12-64. PubMed DOI PMC
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 2019;56:1–16. doi: 10.1016/j.ymben.2019.08.004. PubMed DOI PMC
Porcar M, Danchin A, de Lorenzo V. Confidence, tolerance, and allowance in biological engineering: the nuts and bolts of living things. BioEssays. 2015;37:95–102. doi: 10.1002/bies.201400091. PubMed DOI
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 2022;54:107795. doi: 10.1016/j.biotechadv.2021.107795. PubMed DOI
Nikel PI, Martínez-García E, de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 2014;12:368–379. doi: 10.1038/nrmicro3253. PubMed DOI
Sullivan KP, et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science. 2022;378:207–211. doi: 10.1126/science.abo4626. PubMed DOI
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017;35:845–866. doi: 10.1016/j.biotechadv.2017.08.001. PubMed DOI
Salvachúa D, et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. 2020;117:9302–9310. doi: 10.1073/pnas.1921073117. PubMed DOI PMC
Liu Z-H, et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 2021;12:3912. doi: 10.1038/s41467-021-23920-4. PubMed DOI PMC
Kohlstedt M, et al. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metab. Eng. 2022;72:337–352. doi: 10.1016/j.ymben.2022.05.001. PubMed DOI
Dvořák P, de Lorenzo V. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab. Eng. 2018;48:94–108. doi: 10.1016/j.ymben.2018.05.019. PubMed DOI
Elmore JR, et al. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab. Eng. 2020;62:62–71. doi: 10.1016/j.ymben.2020.08.001. PubMed DOI
Meijnen J-P, de Winde JH, Ruijssenaars HJ. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Appl. Environ. Microbiol. 2008;74:5031–5037. doi: 10.1128/AEM.00924-08. PubMed DOI PMC
Lim HG, et al. Generation of Pseudomonas putida KT2440 strains with efficient utilization of xylose and galactose via adaptive laboratory evolution. ACS Sustain. Chem. Eng. 2021;9:11512–11523. doi: 10.1021/acssuschemeng.1c03765. DOI
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front. Bioeng. Biotechnol. 2020;7:480. doi: 10.3389/fbioe.2019.00480. PubMed DOI PMC
Wang Y, et al. Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy. 2019;11:249–259. doi: 10.1111/gcbb.12590. DOI
Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways. J. Biol. Chem. 2015;290:25920–25932. doi: 10.1074/jbc.M115.687749. PubMed DOI PMC
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Factories. 2014;13:159. doi: 10.1186/s12934-014-0159-3. PubMed DOI PMC
Meijnen J-P, Winde JHde, Ruijssenaars HJ. Metabolic and regulatory rearrangements underlying efficient d-xylose utilization in engineered Pseudomonas putida S12 *. J. Biol. Chem. 2012;287:14606–14614. doi: 10.1074/jbc.M111.337501. PubMed DOI PMC
Dvořák P, Kováč J, de Lorenzo V. Biotransformation of D-xylose to D-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42. Microb. Biotechnol. 2020;13:1273–1283. doi: 10.1111/1751-7915.13574. PubMed DOI PMC
Bujdoš D, et al. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab. Eng. 2023;75:29–46. doi: 10.1016/j.ymben.2022.10.011. PubMed DOI
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl. Microbiol. Biotechnol. 2020;104:7745–7766. doi: 10.1007/s00253-020-10811-9. PubMed DOI PMC
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 2009;27:946–950. doi: 10.1038/nbt.1568. PubMed DOI PMC
Ceroni F, Algar R, Stan G-B, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods. 2015;12:415–418. doi: 10.1038/nmeth.3339. PubMed DOI
Wiechert W. 13C metabolic flux analysis. Metab. Eng. 2001;3:195–206. doi: 10.1006/mben.2001.0187. PubMed DOI
Kohlstedt M, Wittmann C. GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab. Eng. 2019;54:35–53. doi: 10.1016/j.ymben.2019.01.008. PubMed DOI
Beckers V, Poblete-Castro I, Tomasch J, Wittmann C. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb. Cell Factories. 2016;15:73. doi: 10.1186/s12934-016-0470-2. PubMed DOI PMC
Kukurugya MA, et al. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Pseudomonas putida. J. Biol. Chem. 2019;294:8464–8479. doi: 10.1074/jbc.RA119.007885. PubMed DOI PMC
Wilkes RA, Waldbauer J, Aristilde L. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni implies energetic bypass to facilitate gluconeogenic growth. mBio. 2021;12:e03259–21. doi: 10.1128/mbio.03259-21. PubMed DOI PMC
Sudarsan S, et al. Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab. Eng. Commun. 2016;3:97–110. doi: 10.1016/j.meteno.2016.03.005. PubMed DOI PMC
La Rosa R, Nogales J, Rojo F. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. Environ. Microbiol. 2015;17:3362–3378. doi: 10.1111/1462-2920.12812. PubMed DOI
Sasnow SS, Wei H, Aristilde L. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida. Microbiol. Open. 2016;5:3–20. doi: 10.1002/mbo3.287. PubMed DOI PMC
Nikel, P. I. et al. Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J. 15, 1751–1766 (2021). PubMed PMC
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat. Biotechnol. 2010;28:245–248. doi: 10.1038/nbt.1614. PubMed DOI PMC
Cheng K-K, et al. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat. Commun. 2014;5:3233. doi: 10.1038/ncomms4233. PubMed DOI
Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 Genes Genomes Genet. 2022;13:jkac310. doi: 10.1093/g3journal/jkac310. PubMed DOI PMC
Udaondo Z, Ramos J, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 2018;11:442–454. doi: 10.1111/1751-7915.13263. PubMed DOI PMC
Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010;34:658–684. doi: 10.1111/j.1574-6976.2010.00218.x. PubMed DOI
del Castillo T, Duque E, Ramos JL. A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J. Bacteriol. 2008;190:2331–2339. doi: 10.1128/JB.01726-07. PubMed DOI PMC
Bentley GJ, et al. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440. Metab. Eng. 2020;59:64–75. doi: 10.1016/j.ymben.2020.01.001. PubMed DOI
Volke DC, Olavarría K, Nikel PI. Cofactor specificity of Glucose-6-Phosphate dehydrogenase isozymes in Pseudomonas putida reveals a general principle underlying glycolytic strategies in bacteria. mSystems. 2021;6:e00014–e00021. doi: 10.1128/mSystems.00014-21. PubMed DOI PMC
Noor E, Eden E, Milo R, Alon U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol. Cell. 2010;39:809–820. doi: 10.1016/j.molcel.2010.08.031. PubMed DOI
Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267:240–243. doi: 10.1126/science.267.5195.240. PubMed DOI
Martínez-García, E., Aparicio, T., de Lorenzo, V. & Nikel, P.I. New transposon tools tailored for metabolic engineering of gram-negative microbial cell factories. Front. Bioeng. Biotechnol. 2, 46 (2014). PubMed PMC
Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb. Biotechnol. 2020;14:2679–2685. doi: 10.1111/1751-7915.13678. PubMed DOI PMC
Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 2011;35:652–680. doi: 10.1111/j.1574-6976.2011.00269.x. PubMed DOI
El-Kirat-Chatel S, Beaussart A, Boyd CD, O’Toole GA, Dufrêne YF. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem. Biol. 2014;9:485–494. doi: 10.1021/cb400794e. PubMed DOI PMC
Chu EK, Kilic O, Cho H, Groisman A, Levchenko A. Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli. Nat. Commun. 2018;9:4087. doi: 10.1038/s41467-018-06552-z. PubMed DOI PMC
Mutalik VK, et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods. 2013;10:354–360. doi: 10.1038/nmeth.2404. PubMed DOI
Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–1265. doi: 10.3390/biom5031245. PubMed DOI PMC
Conrad TM, et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl Acad. Sci. Usa. 2010;107:20500–20505. doi: 10.1073/pnas.0911253107. PubMed DOI PMC
Tenaillon O, et al. The molecular diversity of adaptive convergence. Science. 2012;335:457–461. doi: 10.1126/science.1212986. PubMed DOI
Choe D, et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 2019;10:935. doi: 10.1038/s41467-019-08888-6. PubMed DOI PMC
Tomko TA, Dunlop MJ. Expression of heterologous sigma factor expands the searchable space for biofuel tolerance mechanisms. ACS Synth. Biol. 2017;6:1343–1350. doi: 10.1021/acssynbio.6b00375. PubMed DOI
Tomatis PE, Schütz M, Umudumov E, Plückthun A. Mutations in sigma 70 transcription factor improves expression of functional eukaryotic membrane proteins in Escherichia coli. Sci. Rep. 2019;9:2483. doi: 10.1038/s41598-019-39492-9. PubMed DOI PMC
Pang C, et al. Engineering sigma factors and chaperones for enhanced heterologous lipoxygenase production in Escherichia coli. Biotechnol. Biofuels Bioprod. 2022;15:105. doi: 10.1186/s13068-022-02206-x. PubMed DOI PMC
Wagner S, Bader ML, Drew D, de Gier J-W. Rationalizing membrane protein overexpression. Trends Biotechnol. 2006;24:364–371. doi: 10.1016/j.tibtech.2006.06.008. PubMed DOI
Schmitz, S., Nies, S., Wierckx, N., Blank, L. M. & Rosenbaum, M. A. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol. 6, 284 (2015). PubMed PMC
Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine. J. Bacteriol. 1980;141:156–163. doi: 10.1128/jb.141.1.156-163.1980. PubMed DOI PMC
DeBritto S, et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 2020;10:1542. doi: 10.1038/s41598-020-58335-6. PubMed DOI PMC
Tan ZL, et al. In vivo continuous evolution of metabolic pathways for chemical production. Microb. Cell Factories. 2019;18:82. doi: 10.1186/s12934-019-1132-y. PubMed DOI PMC
Wirth NT, et al. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes. Metab. Eng. 2022;74:83–97. doi: 10.1016/j.ymben.2022.09.004. PubMed DOI
Abril MA, Michan C, Timmis KN, Ramos JL. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 1989;171:6782–6790. doi: 10.1128/jb.171.12.6782-6790.1989. PubMed DOI PMC
Martínez-García E, de Lorenzo V. Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. Methods Mol. Biol. Clifton NJ. 2012;813:267–283. doi: 10.1007/978-1-61779-412-4_16. PubMed DOI
Horton RM, Cai Z, Ho SN, Pease LR. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. BioTechniques. 1990;8:528–535. PubMed
Bennette NB, Eng JF, Dismukes GC. An LC–MS-Based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal. Chem. 2011;83:3808–3816. doi: 10.1021/ac200108a. PubMed DOI
Millard P, Letisse F, Sokol S, Portais J-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinforma. Oxf. Engl. 2012;28:1294–1296. doi: 10.1093/bioinformatics/bts127. PubMed DOI
Schmitz, A., Ebert, B. E. & Blank, L. M. GC-MS-Based Determination of Mass Isotopomer Distributions for 13C-Based Metabolic Flux Analysis. in Hydrocarbon and Lipid Microbiology Protocols: Genetic, Genomic and System Analyses of Pure Cultures (eds. McGenity, T. J., Timmis, K. N. & Nogales, B.) 223–243 (Springer, 2017). 10.1007/8623_2015_78.
Poskar CH, et al. iMS2Flux– a high–throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis. BMC Bioinforma. 2012;13:295. doi: 10.1186/1471-2105-13-295. PubMed DOI PMC
Young JD. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinforma. Oxf. Engl. 2014;30:1333–1335. doi: 10.1093/bioinformatics/btu015. PubMed DOI PMC
Nogales J, et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 2020;22:255–269. doi: 10.1111/1462-2920.14843. PubMed DOI PMC
Heirendt L, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 2019;14:639–702. doi: 10.1038/s41596-018-0098-2. PubMed DOI PMC
Swain PS, et al. Inferring time derivatives including cell growth rates using Gaussian processes. Nat. Commun. 2016;7:13766. doi: 10.1038/ncomms13766. PubMed DOI PMC