Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose

. 2024 Mar 26 ; 15 (1) : 2666. [epub] 20240326

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38531855

Grantová podpora
22-12505S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 38531855
PubMed Central PMC10965963
DOI 10.1038/s41467-024-46812-9
PII: 10.1038/s41467-024-46812-9
Knihovny.cz E-zdroje

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.

Zobrazit více v PubMed

Narisetty V, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain. Energy Fuels. 2021;6:29–65. doi: 10.1039/D1SE00927C. PubMed DOI PMC

Baral NR, et al. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain. Chem. Eng. 2019;7:9062–9079. doi: 10.1021/acssuschemeng.9b01229. DOI

Sun L, et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 2021;12:4975. doi: 10.1038/s41467-021-25241-y. PubMed DOI PMC

Ling C, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 2022;13:4925. doi: 10.1038/s41467-022-32296-y. PubMed DOI PMC

Taha M, et al. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 2016;38:190–197. doi: 10.1016/j.copbio.2016.02.012. PubMed DOI

Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008;6:613–624. doi: 10.1038/nrmicro1932. PubMed DOI

Volk MJ, et al. Metabolic engineering: methodologies and applications. Chem. Rev. 2022;123:5521–5570. doi: 10.1021/acs.chemrev.2c00403. PubMed DOI

Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb. Cell Factories. 2013;12:64. doi: 10.1186/1475-2859-12-64. PubMed DOI PMC

Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 2019;56:1–16. doi: 10.1016/j.ymben.2019.08.004. PubMed DOI PMC

Porcar M, Danchin A, de Lorenzo V. Confidence, tolerance, and allowance in biological engineering: the nuts and bolts of living things. BioEssays. 2015;37:95–102. doi: 10.1002/bies.201400091. PubMed DOI

Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 2022;54:107795. doi: 10.1016/j.biotechadv.2021.107795. PubMed DOI

Nikel PI, Martínez-García E, de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 2014;12:368–379. doi: 10.1038/nrmicro3253. PubMed DOI

Sullivan KP, et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science. 2022;378:207–211. doi: 10.1126/science.abo4626. PubMed DOI

Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017;35:845–866. doi: 10.1016/j.biotechadv.2017.08.001. PubMed DOI

Salvachúa D, et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. 2020;117:9302–9310. doi: 10.1073/pnas.1921073117. PubMed DOI PMC

Liu Z-H, et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 2021;12:3912. doi: 10.1038/s41467-021-23920-4. PubMed DOI PMC

Kohlstedt M, et al. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metab. Eng. 2022;72:337–352. doi: 10.1016/j.ymben.2022.05.001. PubMed DOI

Dvořák P, de Lorenzo V. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab. Eng. 2018;48:94–108. doi: 10.1016/j.ymben.2018.05.019. PubMed DOI

Elmore JR, et al. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab. Eng. 2020;62:62–71. doi: 10.1016/j.ymben.2020.08.001. PubMed DOI

Meijnen J-P, de Winde JH, Ruijssenaars HJ. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Appl. Environ. Microbiol. 2008;74:5031–5037. doi: 10.1128/AEM.00924-08. PubMed DOI PMC

Lim HG, et al. Generation of Pseudomonas putida KT2440 strains with efficient utilization of xylose and galactose via adaptive laboratory evolution. ACS Sustain. Chem. Eng. 2021;9:11512–11523. doi: 10.1021/acssuschemeng.1c03765. DOI

Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front. Bioeng. Biotechnol. 2020;7:480. doi: 10.3389/fbioe.2019.00480. PubMed DOI PMC

Wang Y, et al. Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy. 2019;11:249–259. doi: 10.1111/gcbb.12590. DOI

Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways. J. Biol. Chem. 2015;290:25920–25932. doi: 10.1074/jbc.M115.687749. PubMed DOI PMC

Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Factories. 2014;13:159. doi: 10.1186/s12934-014-0159-3. PubMed DOI PMC

Meijnen J-P, Winde JHde, Ruijssenaars HJ. Metabolic and regulatory rearrangements underlying efficient d-xylose utilization in engineered Pseudomonas putida S12 *. J. Biol. Chem. 2012;287:14606–14614. doi: 10.1074/jbc.M111.337501. PubMed DOI PMC

Dvořák P, Kováč J, de Lorenzo V. Biotransformation of D-xylose to D-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42. Microb. Biotechnol. 2020;13:1273–1283. doi: 10.1111/1751-7915.13574. PubMed DOI PMC

Bujdoš D, et al. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab. Eng. 2023;75:29–46. doi: 10.1016/j.ymben.2022.10.011. PubMed DOI

Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl. Microbiol. Biotechnol. 2020;104:7745–7766. doi: 10.1007/s00253-020-10811-9. PubMed DOI PMC

Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 2009;27:946–950. doi: 10.1038/nbt.1568. PubMed DOI PMC

Ceroni F, Algar R, Stan G-B, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods. 2015;12:415–418. doi: 10.1038/nmeth.3339. PubMed DOI

Wiechert W. 13C metabolic flux analysis. Metab. Eng. 2001;3:195–206. doi: 10.1006/mben.2001.0187. PubMed DOI

Kohlstedt M, Wittmann C. GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab. Eng. 2019;54:35–53. doi: 10.1016/j.ymben.2019.01.008. PubMed DOI

Beckers V, Poblete-Castro I, Tomasch J, Wittmann C. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb. Cell Factories. 2016;15:73. doi: 10.1186/s12934-016-0470-2. PubMed DOI PMC

Kukurugya MA, et al. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Pseudomonas putida. J. Biol. Chem. 2019;294:8464–8479. doi: 10.1074/jbc.RA119.007885. PubMed DOI PMC

Wilkes RA, Waldbauer J, Aristilde L. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni implies energetic bypass to facilitate gluconeogenic growth. mBio. 2021;12:e03259–21. doi: 10.1128/mbio.03259-21. PubMed DOI PMC

Sudarsan S, et al. Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab. Eng. Commun. 2016;3:97–110. doi: 10.1016/j.meteno.2016.03.005. PubMed DOI PMC

La Rosa R, Nogales J, Rojo F. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. Environ. Microbiol. 2015;17:3362–3378. doi: 10.1111/1462-2920.12812. PubMed DOI

Sasnow SS, Wei H, Aristilde L. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida. Microbiol. Open. 2016;5:3–20. doi: 10.1002/mbo3.287. PubMed DOI PMC

Nikel, P. I. et al. Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J. 15, 1751–1766 (2021). PubMed PMC

Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat. Biotechnol. 2010;28:245–248. doi: 10.1038/nbt.1614. PubMed DOI PMC

Cheng K-K, et al. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat. Commun. 2014;5:3233. doi: 10.1038/ncomms4233. PubMed DOI

Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 Genes Genomes Genet. 2022;13:jkac310. doi: 10.1093/g3journal/jkac310. PubMed DOI PMC

Udaondo Z, Ramos J, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 2018;11:442–454. doi: 10.1111/1751-7915.13263. PubMed DOI PMC

Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010;34:658–684. doi: 10.1111/j.1574-6976.2010.00218.x. PubMed DOI

del Castillo T, Duque E, Ramos JL. A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J. Bacteriol. 2008;190:2331–2339. doi: 10.1128/JB.01726-07. PubMed DOI PMC

Bentley GJ, et al. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440. Metab. Eng. 2020;59:64–75. doi: 10.1016/j.ymben.2020.01.001. PubMed DOI

Volke DC, Olavarría K, Nikel PI. Cofactor specificity of Glucose-6-Phosphate dehydrogenase isozymes in Pseudomonas putida reveals a general principle underlying glycolytic strategies in bacteria. mSystems. 2021;6:e00014–e00021. doi: 10.1128/mSystems.00014-21. PubMed DOI PMC

Noor E, Eden E, Milo R, Alon U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol. Cell. 2010;39:809–820. doi: 10.1016/j.molcel.2010.08.031. PubMed DOI

Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267:240–243. doi: 10.1126/science.267.5195.240. PubMed DOI

Martínez-García, E., Aparicio, T., de Lorenzo, V. & Nikel, P.I. New transposon tools tailored for metabolic engineering of gram-negative microbial cell factories. Front. Bioeng. Biotechnol. 2, 46 (2014). PubMed PMC

Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb. Biotechnol. 2020;14:2679–2685. doi: 10.1111/1751-7915.13678. PubMed DOI PMC

Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 2011;35:652–680. doi: 10.1111/j.1574-6976.2011.00269.x. PubMed DOI

El-Kirat-Chatel S, Beaussart A, Boyd CD, O’Toole GA, Dufrêne YF. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem. Biol. 2014;9:485–494. doi: 10.1021/cb400794e. PubMed DOI PMC

Chu EK, Kilic O, Cho H, Groisman A, Levchenko A. Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli. Nat. Commun. 2018;9:4087. doi: 10.1038/s41467-018-06552-z. PubMed DOI PMC

Mutalik VK, et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods. 2013;10:354–360. doi: 10.1038/nmeth.2404. PubMed DOI

Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–1265. doi: 10.3390/biom5031245. PubMed DOI PMC

Conrad TM, et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl Acad. Sci. Usa. 2010;107:20500–20505. doi: 10.1073/pnas.0911253107. PubMed DOI PMC

Tenaillon O, et al. The molecular diversity of adaptive convergence. Science. 2012;335:457–461. doi: 10.1126/science.1212986. PubMed DOI

Choe D, et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 2019;10:935. doi: 10.1038/s41467-019-08888-6. PubMed DOI PMC

Tomko TA, Dunlop MJ. Expression of heterologous sigma factor expands the searchable space for biofuel tolerance mechanisms. ACS Synth. Biol. 2017;6:1343–1350. doi: 10.1021/acssynbio.6b00375. PubMed DOI

Tomatis PE, Schütz M, Umudumov E, Plückthun A. Mutations in sigma 70 transcription factor improves expression of functional eukaryotic membrane proteins in Escherichia coli. Sci. Rep. 2019;9:2483. doi: 10.1038/s41598-019-39492-9. PubMed DOI PMC

Pang C, et al. Engineering sigma factors and chaperones for enhanced heterologous lipoxygenase production in Escherichia coli. Biotechnol. Biofuels Bioprod. 2022;15:105. doi: 10.1186/s13068-022-02206-x. PubMed DOI PMC

Wagner S, Bader ML, Drew D, de Gier J-W. Rationalizing membrane protein overexpression. Trends Biotechnol. 2006;24:364–371. doi: 10.1016/j.tibtech.2006.06.008. PubMed DOI

Schmitz, S., Nies, S., Wierckx, N., Blank, L. M. & Rosenbaum, M. A. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol. 6, 284 (2015). PubMed PMC

Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine. J. Bacteriol. 1980;141:156–163. doi: 10.1128/jb.141.1.156-163.1980. PubMed DOI PMC

DeBritto S, et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 2020;10:1542. doi: 10.1038/s41598-020-58335-6. PubMed DOI PMC

Tan ZL, et al. In vivo continuous evolution of metabolic pathways for chemical production. Microb. Cell Factories. 2019;18:82. doi: 10.1186/s12934-019-1132-y. PubMed DOI PMC

Wirth NT, et al. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes. Metab. Eng. 2022;74:83–97. doi: 10.1016/j.ymben.2022.09.004. PubMed DOI

Abril MA, Michan C, Timmis KN, Ramos JL. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 1989;171:6782–6790. doi: 10.1128/jb.171.12.6782-6790.1989. PubMed DOI PMC

Martínez-García E, de Lorenzo V. Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. Methods Mol. Biol. Clifton NJ. 2012;813:267–283. doi: 10.1007/978-1-61779-412-4_16. PubMed DOI

Horton RM, Cai Z, Ho SN, Pease LR. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. BioTechniques. 1990;8:528–535. PubMed

Bennette NB, Eng JF, Dismukes GC. An LC–MS-Based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal. Chem. 2011;83:3808–3816. doi: 10.1021/ac200108a. PubMed DOI

Millard P, Letisse F, Sokol S, Portais J-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinforma. Oxf. Engl. 2012;28:1294–1296. doi: 10.1093/bioinformatics/bts127. PubMed DOI

Schmitz, A., Ebert, B. E. & Blank, L. M. GC-MS-Based Determination of Mass Isotopomer Distributions for 13C-Based Metabolic Flux Analysis. in Hydrocarbon and Lipid Microbiology Protocols: Genetic, Genomic and System Analyses of Pure Cultures (eds. McGenity, T. J., Timmis, K. N. & Nogales, B.) 223–243 (Springer, 2017). 10.1007/8623_2015_78.

Poskar CH, et al. iMS2Flux– a high–throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis. BMC Bioinforma. 2012;13:295. doi: 10.1186/1471-2105-13-295. PubMed DOI PMC

Young JD. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinforma. Oxf. Engl. 2014;30:1333–1335. doi: 10.1093/bioinformatics/btu015. PubMed DOI PMC

Nogales J, et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 2020;22:255–269. doi: 10.1111/1462-2920.14843. PubMed DOI PMC

Heirendt L, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 2019;14:639–702. doi: 10.1038/s41596-018-0098-2. PubMed DOI PMC

Swain PS, et al. Inferring time derivatives including cell growth rates using Gaussian processes. Nat. Commun. 2016;7:13766. doi: 10.1038/ncomms13766. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...