Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42

. 2020 Jul ; 13 (4) : 1273-1283. [epub] 20200503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32363744

Co-production of two or more desirable compounds from low-cost substrates by a single microbial catalyst could greatly improve the economic competitiveness of many biotechnological processes. However, reports demonstrating the adoption of such co-production strategy are still scarce. In this study, the ability of genome-edited strain Pseudomonas putida EM42 to simultaneously valorize d-xylose and d-cellobiose - two important lignocellulosic carbohydrates - by converting them into the platform chemical d-xylonate and medium-chain-length polyhydroxyalkanoates, respectively, was investigated. Biotransformation experiments performed with P. putida resting cells showed that promiscuous periplasmic glucose oxidation route can efficiently generate extracellular xylonate with a high yield. Xylose oxidation was subsequently coupled to the growth of P. putida with cytoplasmic β-glucosidase BglC from Thermobifida fusca on d-cellobiose. This disaccharide turned out to be a better co-substrate for xylose-to-xylonate biotransformation than monomeric glucose. This was because unlike glucose, cellobiose did not block oxidation of the pentose by periplasmic glucose dehydrogenase Gcd, but, similarly to glucose, it was a suitable substrate for polyhydroxyalkanoate formation in P. putida. Co-production of extracellular xylose-born xylonate and intracellular cellobiose-born medium-chain-length polyhydroxyalkanoates was established in proof-of-concept experiments with P. putida grown on the disaccharide. This study highlights the potential of P. putida EM42 as a microbial platform for the production of xylonate, identifies cellobiose as a new substrate for mcl-PHA production, and proposes a fresh strategy for the simultaneous valorization of xylose and cellobiose.

Zobrazit více v PubMed

An, R. , and Moe, L.A. (2016) Regulation of pyrroloquinoline quinone‐dependent glucose dehydrogenase activity in the model rhizosphere‐dwelling bacterium Pseudomonas putida KT2440. Appl Environ Microbiol 82: 4955–4964. PubMed PMC

Baral, N.R. , Sundstrom, E.R. , Das, L. , Gladden, J. , Eudes, A. , Mortimer, J.C. , et al (2019) Approaches for more efficient biological conversion of Lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustainable Chem Eng 7: 9062–9079.

Bator, I. , Wittgens, A. , Rosenau, F. , Tiso, T. , and Blank, L.M. (2020) Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front Bioeng Biotechnol 7: 480. PubMed PMC

Belda, E. , van Heck, R.G.A. , José Lopez‐Sanchez, M. , Cruveiller, S. , Barbe, V. , Fraser, C. , et al (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18: 3403–3424. PubMed

Borrero‐de Acuña, J.M. , Bielecka, A. , Häussler, S. , Schobert, M. , Jahn, M. , Wittmann, C. , et al (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida . Microb Cell Fact 13: 88. PubMed PMC

Buchert, J. , and Viikari, L. (1988) The role of xylonolactone in xylonic acid production by Pseudomonas fragi . Appl Microbiol Biotechnol 27: 333–336.

Buchert, J. , Viikari, L. , Linko, M. , and Markkanen, P. (1986) Production of xylonic acid by Pseudomonas fragi . Biotechnol Lett 8: 541–546.

Buchert, J. , Puls, J. , and Poutanen, K. (1988) Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Appl Microbiol Biotechnol 28: 367–372.

del Castillo, T. , Ramos, J.L. , Rodríguez‐Herva, J.J. , Fuhrer, T. , Sauer, U. , and Duque, E. (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189: 5142–5152. PubMed PMC

Chen, G.‐Q. (2009) A microbial polyhydroxyalkanoates (PHA) based bio‐ and materials industry. Chem Soc Rev 38: 2434–2446. PubMed

Chen, R. (2015) A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 6: 69–72. PubMed PMC

Dumon, C. , Song, L. , Bozonnet, S. , Fauré, R. , and O’Donohue, M.J. (2012) Progress and future prospects for pentose‐specific biocatalysts in biorefining. Process Biochem 47: 346–357.

Dvořák, P. , and de Lorenzo, V. (2018) Refactoring the upper sugar metabolism of Pseudomonas putida for co‐utilization of cellobiose, xylose, and glucose. Metab Eng 48: 94–108. PubMed

Gao, C. , Hou, J. , Xu, P. , Guo, L. , Chen, X. , Hu, G. , et al (2019) Programmable biomolecular switches for rewiring flux in Escherichia coli . Nat Commun 10: 3751. PubMed PMC

Guo, W. , Song, C. , Kong, M. , Geng, W. , Wang, Y. , and Wang, S. (2011) Simultaneous production and characterization of medium‐chain‐length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK‐01. Appl Microbiol Biotechnol 92: 791–801. PubMed

Ha, S.‐J. , Galazka, J.M. , Kim, S.R. , Choi, J.‐H. , Yang, X. , Seo, J.‐H. , et al (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108: 504–509. PubMed PMC

Hardy, G.P. , Teixeira de Mattos, M.J. , and Neijssel, O.M. (1993) Energy conservation by pyrroloquinoline quinol‐linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon‐limited growth in chemostat culture. FEMS Microbiol Lett 107: 107–110. PubMed

Hori, K. , Ichinohe, R. , Unno, H. , and Marsudi, S. (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng 53: 196–202.

Huijberts, G.N. , Eggink, G. , de Waard, P. , Huisman, G.W. , and Witholt, B. (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3‐hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58: 536–544. PubMed PMC

Jayakody, L.N. , Johnson, C.W. , Whitham, J.M. , Giannone, R.J. , Black, B.A. , Cleveland, N.S. , et al (2018) Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ Sci 11: 1625–1638.

Kawaguchi, H. , Hasunuma, T. , Ogino, C. , and Kondo, A. (2016) Bioprocessing of bio‐based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42: 30–39. PubMed

Köhler, K.A.K. , Blank, L.M. , Frick, O. , and Schmid, A. (2015) D‐Xylose assimilation via the Weimberg pathway by solvent‐tolerant Pseudomonas taiwanensis VLB120. Environ Microbiol 17: 156–170. PubMed

Kohlstedt, M. , and Wittmann, C. (2019) GC‐MS‐based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 54: 35–53. PubMed

Kukurugya, M.A. , Mendonca, C.M. , Solhtalab, M. , Wilkes, R.A. , Thannhauser, T.W. , and Aristilde, L. (2019) Multi‐omics analysis unravels a segregated metabolic flux network that tunes co‐utilization of sugar and aromatic carbons in Pseudomonas putida . J Biol Chem 294: 8464–8479. PubMed PMC

La Rosa, R. , Behrends, V. , Williams, H.D. , Bundy, J.G. , and Rojo, F. (2016) Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium in Pseudomonas . Environ Microbiol 18: 807–818. PubMed

Larroude, M. , Celinska, E. , Back, A. , Thomas, S. , Nicaud, J.‐M. , and Ledesma‐Amaro, R. (2018) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β‐carotene. Biotechnol Bioeng 115: 464–472. PubMed

Li, T. , Elhadi, D. , and Chen, G.‐Q. (2017) Co‐production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43: 29–36. PubMed

Licciardello, G. , Ferraro, R. , Russo, M. , Strozzi, F. , Catara, A.F. , Bella, P. , and Catara, V. (2017) Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium‐chain‐length PHAs by glycerol bioconversion. N Biotechnol 37: 39–47. PubMed

Lien, O.G. (1959) Determination of gluconolactone, galactonolactone, and their free acids by hydroxamate method. Anal Chem 31: 1363–1366.

Linger, J.G. , Vardon, D.R. , Guarnieri, M.T. , Karp, E.M. , Hunsinger, G.B. , Franden, M.A. , et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA 111: 12013–12018. PubMed PMC

Linger, J.G. , Hobdey, S.E. , Franden, M.A. , Fulk, E.M. , and Beckham, G.T. (2016) Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab Eng Commun 3: 24–29. PubMed PMC

Liu, H. , Valdehuesa, K.N.G. , Nisola, G.M. , Ramos, K.R.M. , and Chung, W.‐J. (2012) High yield production of D‐xylonic acid from D‐xylose using engineered Escherichia coli . Bioresour Technol 115: 244–248. PubMed

Loeschcke, A. , and Thies, S. (2015) Pseudomonas putida‐a versatile host for the production of natural products. Appl Microbiol Biotechnol 99: 6197–6214. PubMed PMC

Löwe, H. , Sinner, P. , Kremling, A. , and Pflüger‐Grau, K. (2018) Engineering sucrose metabolism in Pseudomonas putida highlights the importance of porins. Microb Biotechnol 13: 97–106. PubMed PMC

Martínez‐García, E. , Nikel, P.I. , Aparicio, T. , and de Lorenzo, V. (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13: 159. PubMed PMC

Mehtiö, T. , Toivari, M. , Wiebe, M.G. , Harlin, A. , Penttilä, M. , and Koivula, A. (2016) Production and applications of carbohydrate‐derived sugar acids as generic biobased chemicals. Crit Rev Biotechnol 36: 904–916. PubMed

Meijnen, J.‐P. , de Winde, J.H. , and Ruijssenaars, H.J. (2008) Engineering Pseudomonas putida S12 for efficient utilization of D‐xylose and L‐arabinose. Appl Environ Microbiol 74: 5031–5037. PubMed PMC

Mosier, N. , Wyman, C. , Dale, B. , Elander, R. , Lee, Y.Y. , Holtzapple, M. , and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96: 673–686. PubMed

Nikel, P.I. , and de Lorenzo, V. (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans‐metabolism. Metab Eng 50: 142–155. PubMed

Nikel, P.I. , Chavarría, M. , Fuhrer, T. , Sauer, U. , and de Lorenzo, V. (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner‐Doudoroff, Embden‐Meyerhof‐Parnas, and Pentose Phosphate Pathways. J Biol Chem 290: 25920–32. PubMed PMC

Nygård, Y. , Toivari, M.H. , Penttilä, M. , Ruohonen, L. , and Wiebe, M.G. (2011) Bioconversion of d‐xylose to d‐xylonate with Kluyveromyces lactis . Metab Eng 13: 383–391. PubMed

Parisutham, V. , Chandran, S.‐P. , Mukhopadhyay, A. , Lee, S.K. , and Keasling, J.D. (2017) Intracellular cellobiose metabolism and its applications in lignocellulose‐based biorefineries. Bioresour Technol 239: 496–506. PubMed

Poblete‐Castro, I. , Becker, J. , Dohnt, K. , dos Santos, V.M. , and Wittmann, C. (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93: 2279–2290. PubMed

Poblete‐Castro, I. , Binger, D. , Rodrigues, A. , Becker, J. , Martins Dos Santos, V.A.P. , and Wittmann, C. (2013) In‐silico‐driven metabolic engineering of Pseudomonas putida for enhanced production of poly‐hydroxyalkanoates. Metab Eng 15: 113–123. PubMed

Prieto, A. , Escapa, I.F. , Martínez, V. , Dinjaski, N. , Herencias, C. , de la Peña, F. , et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida . Environ Microbiol 18: 341–357. PubMed

Sasnow, S.S. , Wei, H. , and Aristilde, L. (2016) Bypasses in intracellular glucose metabolism in iron‐limited Pseudomonas putida . Microbiologyopen 5: 3–20. PubMed PMC

Searles, S. , and Malins, C. (2013) ICCT White Paper. Availability of cellulosic residues and wastes in the EU. [WWW document]. URL https://www.theicct.org/sites/default/files/publications/ICCT_EUcellulosic-waste-residues_20131022.pdf.

Taha, M. , Foda, M. , Shahsavari, E. , Aburto‐Medina, A. , Adetutu, E. , and Ball, A. (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38: 190–197. PubMed

Toivari, M. , Nygård, Y. , Kumpula, E.‐P. , Vehkomäki, M.‐L. , Benčina, M. , Valkonen, M. , et al (2012a) Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D‐xylose to D‐xylonate. Metab Eng 14: 427–436. PubMed

Toivari, M.H. , Nygård, Y. , Penttilä, M. , Ruohonen, L. , and Wiebe, M.G. (2012b) Microbial D‐xylonate production. Appl Microbiol Biotechnol 96: 1–8. PubMed PMC

Wang, C. , Wei, D. , Zhang, Z. , Wang, D. , Shi, J. , Kim, C.H. , et al (2016) Production of xylonic acid by Klebsiella pneumoniae . Appl Microbiol Biotechnol 100: 10055–10063. PubMed

Wang, Y. , Ling, C. , Chen, Y. , Jiang, X. , and Chen, G.‐Q. (2019) Microbial engineering for easy downstream processing. Biotechnol Adv 37: 107365. PubMed

Werpy, T. , and Petersen, G. (2004) Top value added chemicals from biomass: Volume I ‐ Results of screening for potential candidates from sugars and synthesis gas. 10.2172/15008859. DOI

Wiebe, M.G. , Nygård, Y. , Oja, M. , Andberg, M. , Ruohonen, L. , Koivula, A. , et al (2015) A novel aldose‐aldose oxidoreductase for co‐production of D‐xylonate and xylitol from D‐xylose with Saccharomyces cerevisiae . Appl Microbiol Biotechnol 99: 9439–9447. PubMed PMC

Yu, S. , Lai, B. , Plan, M.R. , Hodson, M.P. , Lestari, E.A. , Song, H. , and Krömer, J.O. (2018) Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol Bioeng 115: 145–155. PubMed

Zhou, X. , Zhou, X. , and Xu, Y. (2017) Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed‐oxygen‐supplied sealed system and cell‐recycle technique. Bioresour Technol 244: 1137–1141. PubMed

Zhu, M. , Sun, L. , Lu, X. , Zong, H. , and Zhuge, B. (2019) Establishment of a transient CRISPR‐Cas9 genome editing system in Candida glycerinogenes for co‐production of ethanol and xylonic acid. J Biosci Bioeng 128: 283–289. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...