Construction of a syntrophic Pseudomonas putida consortium with reciprocal substrate processing
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40799623
PubMed Central
PMC12341930
DOI
10.1093/synbio/ysaf012
PII: ysaf012
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas putida, disaccharides, mathematical model, reciprocal substrate processing, synthetic consortium,
- Publikační typ
- časopisecké články MeSH
Synthetic microbial consortia can leverage their expanded enzymatic reach to tackle biotechnological challenges too complex for single strains, such as biosynthesis of complex secondary metabolites or waste plant biomass degradation and valorisation. The benefit of metabolic cooperation comes with a catch-installing stable interactions between consortium members. Here, we established a mutualistic relationship in the synthetic consortium of Pseudomonas putida strains through reciprocal processing of two disaccharides-cellobiose and xylobiose-obtainable from lignocellulosic residues. Two strains were engineered to hydrolyse and metabolize these sugars: one grows on xylose and hydrolyses cellobiose to produce glucose, while the other grows on glucose and cleaves xylobiose to produce xylose. This specialization allows each strain to provide essential growth substrate to its partner, establishing a mutualistic interaction, which can be termed reciprocal substrate processing. Key enzymes from Escherichia coli (xylose isomerase pathway) and Thermobifida fusca (glycoside hydrolases) were introduced into P. putida to broaden its carbohydrate utilization capabilities and arranged in a way to instal the strain cross-dependency. A mathematical model of the consortium assisted in predicting the effects of substrate composition, strain ratios, and protein expression levels on population dynamics. Our results demonstrate that modulating extrinsic factors such as substrate concentration can help in balancing fitness disparities between the strains, but achieving this by altering intrinsic factors such as glycoside hydrolase expression levels is much more challenging. This study presents reciprocal substrate processing as a strategy for establishing an obligate dependency between strains in the engineered consortium and offers valuable insights into overcoming the challenges of fostering synthetic microbial cooperation.
Zobrazit více v PubMed
Morris BE, Henneberger R, Huber H et al. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 2013;37:384–406. 10.1111/1574-6976.12019 PubMed DOI
Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science 2008;320:1034–9. 10.1126/science.1153213 PubMed DOI
Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol 2014;12:381–90. 10.1038/nrmicro3239 PubMed DOI
De Lorenzo V. 15 years of microbial biotechnology: the time has come to think big—and act soon. Microb Biotechnol 2022;15:240–6. 10.1111/1751-7915.13993 PubMed DOI PMC
Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 2008;26:483–9. 10.1016/j.tibtech.2008.05.004 PubMed DOI
McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 2019;37:181–97. 10.1016/j.tibtech.2018.11.002 PubMed DOI PMC
Roell GW, Zha J, Carr RR et al. Engineering microbial consortia by division of labor. Microb Cell Factories 2019;18:35. 10.1186/s12934-019-1083-3 PubMed DOI PMC
Rapp KM, Jenkins JP, Betenbaugh MJ. Partners for life: building microbial consortia for the future. Curr Opin Biotechnol 2020;66:292–300. 10.1016/j.copbio.2020.10.001 PubMed DOI
Ibrahim M, Raajaraam L, Raman K. Modelling microbial communities: harnessing consortia for biotechnological applications. Comput Struct Biotechnol J 2021;19:3892–907. 10.1016/j.csbj.2021.06.048 PubMed DOI PMC
Snoeck S, Guidi C, De Mey M. “Metabolic burden” explained: stress symptoms and its related responses induced by (over) expression of (heterologous) proteins in PubMed DOI PMC
Bokinsky G, Peralta-Yahya PP, George A et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered PubMed DOI PMC
Minty JJ, Singer ME, Scholz SA et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA 2013;110:14592–7. 10.1073/pnas.1218447110 PubMed DOI PMC
Zhou K, Qiao K, Edgar S et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 2015;33:377–83. 10.1038/nbt.3095 PubMed DOI PMC
Shahab RL, Brethauer S, Davey MP et al. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 2020;369:eabb1214. 10.1126/science.abb1214 PubMed DOI
Cha S, Lim HG, Kwon S et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab Eng 2021;64:146–53. 10.1016/j.ymben.2021.02.001 PubMed DOI
Bizukojc M, Dietz D, Sun J et al. Metabolic modelling of syntrophic-like growth of a 1, 3-propanediol producer, PubMed DOI
Cooper MB, Kazamia E, Helliwell KE et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between PubMed DOI PMC
Wondraczek L, Pohnert G, Schacher FH et al. Artificial microbial arenas: materials for observing and manipulating microbial consortia. Adv Mater 2019;31:e1900284. 10.1002/adma.201900284 PubMed DOI
Duncker KE, Holmes ZA, You L. Engineered microbial consortia: strategies and applications. Microb Cell Factories 2021;20:211. 10.1186/s12934-021-01699-9 PubMed DOI PMC
Dinh CV, Chen X, Prather KL. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system. ACS Synth Biol 2020;9:590–7. 10.1021/acssynbio.9b00451 PubMed DOI
Balagaddé FK, Song H, Ozaki J et al. A synthetic PubMed DOI PMC
Scott SR, Din MO, Bittihn P et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat Microbiol 2017;2:1–9. 10.1038/nmicrobiol.2017.83 PubMed DOI PMC
Balagaddé FK, You L, Hansen CL et al. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309:137–40. 10.1126/science.1109173 PubMed DOI
Rodríguez Amor D, Dal Bello M. Bottom-up approaches to synthetic cooperation in microbial communities. Life 2019;9:22. 10.3390/life9010022 PubMed DOI PMC
Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life PubMed DOI PMC
Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of evolution. Nat Commun 2021;12:3326. 10.1038/s41467-021-23573-3 PubMed DOI PMC
D'Souza G, Shitut S, Preussger D et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 2018;35:455–88. 10.1039/C8NP00009C PubMed DOI
Losoi PS, Santala VP, Santala SM. Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding. ACS Synth Biol 2019;8:2642–50. 10.1021/acssynbio.9b00316 PubMed DOI
Martínez-García E, Nikel PI, Aparicio T et al. Pseudomonas 2.0: genetic upgrading of PubMed DOI PMC
Weimer A, Kohlstedt M, Volke DC et al. Industrial biotechnology of PubMed DOI PMC
Dvořák P, de Lorenzo V. Refactoring the upper sugar metabolism of PubMed DOI
Elmore JR, Dexter GN, Salvachúa D et al. Engineered PubMed DOI
Bujdoš D, Popelářová B, Volke DC et al. Engineering of PubMed DOI
Ling C, Peabody GL, Salvachúa D et al. Muconic acid production from glucose and xylose in PubMed DOI PMC
Kohlstedt M, Weimer A, Weiland F et al. Biobased PET from lignin using an engineered cis, cis-muconate-producing PubMed DOI
Cragg SM, Beckham GT, Bruce NC et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 2015;29:108–19. 10.1016/j.cbpa.2015.10.018 PubMed DOI PMC
Ventorino V, Aliberti A, Faraco V et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep 2015;5:1–13. 10.1038/srep08161 PubMed DOI PMC
Das S, Rudra S, Khatun I et al. Concise review on Lignocellulolytic microbial consortia for lignocellulosic waste biomass utilization: a way forward? Microbiology 2023;92:301–17. 10.1134/S0026261722601282 DOI
Vu VN, Kohári-Farkas C, Filep R et al. Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation. Biofuel Res J 2023;10:1890–900. 10.18331/BRJ2023.10.3.3 DOI
Dvořák P, Burýšková B, Popelářová B et al. Synthetically-primed adaptation of PubMed DOI PMC
Watson JF, García-Nafría J. In vivo DNA assembly using common laboratory bacteria: a re-emerging tool to simplify molecular cloning. J Biol Chem 2019;294:15271–81. 10.1074/jbc.REV119.009109 PubMed DOI PMC
Wirth NT, Kozaeva E, Nikel PI. Accelerated genome engineering of PubMed DOI PMC
Martínez-García E, de Lorenzo V. Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. In: Weber W, Fussenegger M (eds.), Synthetic Gene Networks. Methods in Molecular Biology, Vol. 813, pp. 267–83. Totowa, NJ: Humana Press, 2012. 10.1007/978-1-61779-412-4_16. PubMed DOI
Volke DC, Friis L, Wirth NT et al. Synthetic control of plasmid replication enables target-and self-curing of vectors and expedites genome engineering of PubMed DOI PMC
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008;6:613–24. 10.1038/nrmicro1932 PubMed DOI
Rojo F. Carbon catabolite repression in PubMed DOI
Chen R. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 2015;6:69–72. 10.1080/21655979.2014.1004019 PubMed DOI PMC
Zobel S, Benedetti I, Eisenbach L et al. Tn7-based device for calibrated heterologous gene expression in PubMed DOI
Schlechter RO, Jun H, Bernach M et al. Chromatic bacteria–a broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front Microbiol 2018;9:3052. 10.3389/fmicb.2018.03052 PubMed DOI PMC
Moraïs S, Salama-Alber O, Barak Y et al. Functional association of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 β-xylosidase. J Biol Chem 2012;287:9213–21. 10.1074/jbc.M111.314286 PubMed DOI PMC
Spiridonov NA, Wilson DB. Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete PubMed DOI
Daddaoua A, Krell T, Ramos JL. Regulation of glucose metabolism in PubMed DOI PMC
Van der Hoek SA, Borodina I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr Opin Biotechnol 2020;66:186–94. 10.1016/j.copbio.2020.08.002 PubMed DOI PMC
Murray JD. Mathematical biology: I. An introduction. In: Antman SS, Marsden JE, Sirovich L, Wigging S (eds.),
Freilich S, Zarecki R, Eilam O et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2011;2:589. 10.1038/ncomms1597 PubMed DOI
Tsoi R, Wu F, Zhang C et al. Metabolic division of labor in microbial systems. Proc Natl Acad Sci USA 2018;115:2526–31. 10.1073/pnas.1716888115 PubMed DOI PMC
Govindaswamy S, Vane LM. Multi-stage continuous culture fermentation of glucose–xylose mixtures to fuel ethanol using genetically engineered PubMed DOI
Espeso DR, Dvořák P, Aparicio T et al. An automated DIY framework for experimental evolution of PubMed DOI PMC
Bhatia Y, Mishra S, Bisaria VS. Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 2002;22:375–407. 10.1080/07388550290789568 PubMed DOI
Izert MA, Klimecka MM, Górna MW. Applications of bacterial degrons and degraders—toward targeted protein degradation in bacteria. Front Mol Biosci 2021;8:669762. 10.3389/fmolb.2021.669762 PubMed DOI PMC
Keiler KC, Waller PR, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996;271:990–3. 10.1126/science.271.5251.990 PubMed DOI
Karzai AW, Roche ED, Sauer RT. The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 2000;7:449–55. 10.1038/75843 PubMed DOI
Durante-Rodríguez G, Calles B, De Lorenzo V et al. A SsrA/NIa-based strategy for post-translational regulation of protein levels in gram-negative bacteria. Bio Protoc 2020;10:e3688. 10.21769/BioProtoc.3688 PubMed DOI PMC
Lytvynenko I, Paternoga H, Thrun A et al. Alanine tails signal proteolysis in bacterial ribosome-associated quality control. Cell 2019;178:76–90.e22. 10.1016/j.cell.2019.05.002 PubMed DOI PMC
Fritze J, Zhang M, Luo Q et al. An overview of the bacterial SsrA system modulating intracellular protein levels and activities. Appl Microbiol Biotechnol 2020;104:5229–41. 10.1007/s00253-020-10623-x PubMed DOI
Ebrahimi A, Schwartzman J, Cordero OX. Multicellular behaviour enables cooperation in microbial cell aggregates. Philos Trans R Soc Lond Ser B Biol Sci 2019;374:20190077. 10.1098/rstb.2019.0077 PubMed DOI PMC
Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M. LapF, the second largest PubMed DOI
Lahesaare A, Moor H, Kivisaar M et al. PubMed DOI PMC
Pignon E, Holló G, Steiner T et al. Engineering microbial consortia: uptake and leakage rate differentially shape community arrangement and composition bioRxiv. 2024. 10.1101/2024.07.19.604250 PubMed DOI
Pratt LA, Kolter R. Genetic analysis of PubMed DOI
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 2009;27:946–50. 10.1038/nbt.1568 PubMed DOI PMC
Gilman J, Walls L, Bandiera L et al. Statistical design of experiments for synthetic biology. ACS Synth Biol 2021;10:1–18. 10.1021/acssynbio.0c00385 PubMed DOI
Demko M, Chrást L, Dvořák P et al. Computational modelling of metabolic burden and substrate toxicity in PubMed DOI PMC
Said SB, Or D. Synthetic microbial ecology: engineering habitats for modular consortia. Front Microbiol 2017;8:1125. 10.3389/fmicb.2017.01125 PubMed DOI PMC
Said SB, Tecon R, Borer B et al. The engineering of spatially linked microbial consortia–potential and perspectives. Curr Opin Biotechnol 2020;62:137–45. 10.1016/j.copbio.2019.09.015 PubMed DOI PMC