Computational Modelling of Metabolic Burden and Substrate Toxicity in Escherichia coli Carrying a Synthetic Metabolic Pathway
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/1_026/0008451
Czech Ministry of Education
CZ.02.1.01/0.0/0.0/16_019/000086
Czech Ministry of Education
LM2015047
Czech Ministry of Education
LM2015055
Czech Ministry of Education
GA18-00178S
Grant Agency of Czech Republic
720776
Horizon 2020 Framework Programme
722610
Seventh Framework Programme
PubMed
31718036
PubMed Central
PMC6921056
DOI
10.3390/microorganisms7110553
PII: microorganisms7110553
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradation, computational modelling, environmental pollutants, metabolic burden, population growth,
- Publikační typ
- časopisecké články MeSH
In our previous work, we designed and implemented a synthetic metabolic pathway for 1,2,3-trichloropropane (TCP) biodegradation in Escherichia coli. Significant effects of metabolic burden and toxicity exacerbation were observed on single cell and population levels. Deeper understanding of mechanisms underlying these effects is extremely important for metabolic engineering of efficient microbial cell factories for biotechnological processes. In this paper, we present a novel mathematical model of the pathway. The model addresses for the first time the combined effects of toxicity exacerbation and metabolic burden in the context of bacterial population growth. The model is calibrated with respect to the real data obtained with our original synthetically modified E. coli strain. Using the model, we explore the dynamics of the population growth along with the outcome of the TCP biodegradation pathway considering the toxicity exacerbation and metabolic burden. On the methodological side, we introduce a unique computational workflow utilising algorithmic methods of computer science for the particular modelling problem.
Zobrazit více v PubMed
Marisch K., Bayer K., Cserjan-Puschmann M., Luchner M., Striedner G. Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production. Microb. Cell Factories. 2013;12:58. doi: 10.1186/1475-2859-12-58. PubMed DOI PMC
Zhang Z., Kuipers G., Niemiec Ł., Baumgarten T., Slotboom D.J., de Gier J.W., Hjelm A. High-level production of membrane proteins in E. coli BL21 (DE3) by omitting the inducer IPTG. Microb. Cell Factories. 2015;14:142. doi: 10.1186/s12934-015-0328-z. PubMed DOI PMC
Choi J.H., Keum K.C., Lee S.Y. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci. 2006;61:876–885. doi: 10.1016/j.ces.2005.03.031. DOI
Balzer S., Kucharova V., Megerle J., Lale R., Brautaset T., Valla S. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb. Cell Factories. 2013;12:26. doi: 10.1186/1475-2859-12-26. PubMed DOI PMC
Tolia N.H., Joshua-Tor L. Strategies for protein coexpression in Escherichia coli. Nat. Methods. 2006;3:55. doi: 10.1038/nmeth0106-55. PubMed DOI
Xu P., Vansiri A., Bhan N., Koffas M.A. ePathBrick: A synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth. Biol. 2012;1:256–266. doi: 10.1021/sb300016b. PubMed DOI
Wu J., Du G., Zhou J., Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 2013;16:48–55. doi: 10.1016/j.ymben.2012.11.009. PubMed DOI
Xu P., Gu Q., Wang W., Wong L., Bower A.G., Collins C.H., Koffas M.A. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 2013;4:1409. doi: 10.1038/ncomms2425. PubMed DOI
Fang M.Y., Zhang C., Yang S., Cui J.Y., Jiang P.X., Lou K., Wachi M., Xing X.H. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb. Cell Factories. 2015;14:8. doi: 10.1186/s12934-015-0192-x. PubMed DOI PMC
Liu C., Men X., Chen H., Li M., Ding Z., Chen G., Wang F., Liu H., Wang Q., Zhu Y., et al. A systematic optimization of styrene biosynthesis in Escherichia coli BL21 (DE3) Biotechnol. Biofuels. 2018;11:14. doi: 10.1186/s13068-018-1017-z. PubMed DOI PMC
Fordjour E., Adipah F.K., Zhou S., Du G., Zhou J. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microb. Cell Factories. 2019;18:74. doi: 10.1186/s12934-019-1122-0. PubMed DOI PMC
National Center for Biotechnology Information PubChem Compound Database; CID=656894. [(accessed on 18 December 2018)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/656894.
Glick B.R. Metabolic load and heterologous gene expression. Biotechnol. Adv. 1995;13:247–261. doi: 10.1016/0734-9750(95)00004-A. PubMed DOI
Wu G., Yan Q., Jones J.A., Tang Y.J., Fong S.S., Koffas M.A. Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34:652–664. doi: 10.1016/j.tibtech.2016.02.010. PubMed DOI
Jones K.L., Kim S.W., Keasling J. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2000;2:328–338. doi: 10.1006/mben.2000.0161. PubMed DOI
Silva F., Queiroz J.A., Domingues F.C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol. Adv. 2012;30:691–708. doi: 10.1016/j.biotechadv.2011.12.005. PubMed DOI
Mairhofer J., Scharl T., Marisch K., Cserjan-Puschmann M., Striedner G. Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl. Environ. Microbiol. 2013;79:3802–3812. doi: 10.1128/AEM.00365-13. PubMed DOI PMC
Kurumbang N.P., Dvorak P., Bendl J., Brezovsky J., Prokop Z., Damborsky J. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth. Biol. 2013;3:172–181. doi: 10.1021/sb400147n. PubMed DOI
Dvořák P., Chrást L., Nikel P.I., Fedr R., Souček K., Sedláčková M., Chaloupková R., Lorenzo de V., Prokop Z., Damborský J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway. Microb. Cell Factories. 2015;14:201. doi: 10.1186/s12934-015-0393-3. PubMed DOI PMC
de Jong H., Casagranda S., Giordano N., Cinquemani E., Ropers D., Geiselmann J., Gouzé J.L. Mathematical modelling of microbes: Metabolism, gene expression and growth. J. R. Soc. Interface. 2017;14 doi: 10.1098/rsif.2017.0502. PubMed DOI PMC
Weiße A.Y., Oyarzún D.A., Danos V., Swain P.S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA. 2015;112:E1038–E1047. doi: 10.1073/pnas.1416533112. PubMed DOI PMC
Kitano H. Systems biology: Towards system-level understanding of biological systems. Found. Syst. Biol. 2001:1.
Dvořák P. Ph.D. Thesis. Masaryk University, Faculty of Science; Brno, Czech Republic: 2014. Engineering of the Synthetic Metabolic Pathway for Biodegradation of an Environmental Pollutant.
Glazyrina J., Materne E.M., Dreher T., Storm D., Junne S., Adams T., Greller G., Neubauer P. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb. Cell Factories. 2010;9:42. doi: 10.1186/1475-2859-9-42. PubMed DOI PMC
Keener J.P., Sneyd J. Mathematical Physiology. Volume 1 Springer; New York, NY, USA: 1998.
Michaelis L., Menten M.L. Die kinetik der invertinwirkung. Biochem. Ztg. 1913;49:333–369.
Hill A.V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol. 1910;40:4–7.
Monod J. Recherches sur la Croissance des Cultures Bactériennes. Hermann & Cie; Paris, France: 1942.
Yordanov B., Belta C. Hybrid Systems: Computation and Control. Springer; New York, NY, USA: 2008. Parameter synthesis for piecewise affine systems from temporal logic specifications; pp. 542–555.
Donzé A., Clermont G., Langmead C.J. Parameter synthesis in nonlinear dynamical systems: Application to systems biology. J. Comput. Biol. 2010;17:325–336. doi: 10.1089/cmb.2009.0172. PubMed DOI
Donzé A. Breach, a toolbox for verification and parameter synthesis of hybrid systems; Proceedings of the Computer Aided Verification; Edinburgh, UK. 15–19 July 2010; New York, NY, USA: Springer; 2010. pp. 167–170.
Barnat J., Brim L., Krejčí A., Streck A., Šafránek D., Vejnár M., Vejpustek T. On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 2012;9:693–705. doi: 10.1109/TCBB.2011.110. PubMed DOI
Češka M., Dannenberg F., Kwiatkowska M., Paoletti N. Computational Methods in Systems Biology. Springer; Cham, Switzerland: 2014. Precise parameter synthesis for stochastic biochemical systems; pp. 86–98.
Brim L., Češka M., Demko M., Pastva S., Šafránek D. Computational Methods in Systems Biology. Volume 9308. Springer; Cham, Switzerland: 2015. Parameter Synthesis by Parallel Coloured CTL Model Checking; pp. 251–263.
Bortolussi L., Milios D., Sanguinetti G. U-Check: Model Checking and Parameter Synthesis Under Uncertainty; Proceedings of the QEST’15; Madrid, Spain. 1–3 September 2015; New York, NY, USA: Springer; 2015. pp. 89–104. Lecture Notes in Computer Science.
Bogomolov S., Schilling C., Bartocci E., Batt G., Kong H., Grosu R. Hardware and Software: Verification and Testing. Springer; New York, NY, USA: 2015. Abstraction-Based Parameter Synthesis for Multiaffine Systems; pp. 19–35.
Demko M., Beneš N., Brim L., Pastva S., Šafránek D. Computational Methods in Systems Biology. Springer; Cham, Switzerland: 2016. High-performance symbolic parameter synthesis of biological models: A case study; pp. 82–97.
Beneš N., Brim L., Demko M., Pastva S., Šafránek D. Parallel SMT-based parameter synthesis with application to piecewise multi-affine systems; Proceedings of the International Symposium on Automated Technology for Verification and Analysis; Chiba, Japan. 17–20 October 2016;; New York, NY, USA: Springer; 2016. pp. 192–208.
Pastva S. Master’s Thesis. Masaryk University, Faculty of Informatics; Brno, Czech Republic: 2017. Parallel Parameter Synthesis from Hybrid Logic HUCTL Formulas.
Beneš N., Brim L., Demko M., Pastva S., Šafránek D. Pithya: A Parallel Tool for Parameter Synthesis of Piecewise Multi-affine Dynamical Systems; Proceedings of the International Conference on Computer Aided Verification (CAV); Heidelberg, Germany. 24–28 July 2017; New York, NY, USA: Springer; 2017. pp. 591–598.
Aster R.C., Borchers B., Thurber C.H. Parameter Estimation and Inverse Problems. Elsevier; Amsterdam, The Netherlands: 2018.
Hughes G.E., Cresswell M.J. A New Introduction to Modal Logic. Psychology Press; London, UK: 1996.
Rizk A., Batt G., Fages F., Soliman S. A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics. 2009;25:i169–i178. doi: 10.1093/bioinformatics/btp200. PubMed DOI PMC
Rizk A., Batt G., Fages F., Soliman S. Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor. Comput. Sci. 2011;412:2827–2839. doi: 10.1016/j.tcs.2010.05.008. DOI
Donzé A., Fanchon E., Gattepaille L.M., Maler O., Tracqui P. Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE. 2011;6:e24246. doi: 10.1371/journal.pone.0024246. PubMed DOI PMC
Brim L., Dluhoš P., Šafránek D., Vejpustek T. STL*: Extending signal temporal logic with signal-value freezing operator. Inf. Comput. 2014;236:52–67. doi: 10.1016/j.ic.2014.01.012. DOI
Vejpustek T. Master’s Thesis. Masaryk University, Faculty of Informatics; Brno, Czech Republic: 2013. Robustness Analysis of Extended Signal Temporal Logic STL*.
Brim L., Vejpustek T., Šafránek D., Fabriková J. Robustness Analysis for Value-Freezing Signal Temporal Logic. Electron. Proc. Theor. Comput. Sci. 2013;125:20–36. doi: 10.4204/EPTCS.125.2. DOI
Nelson D.L., Lehninger A.L., Cox M.M. Lehninger Principles of Biochemistry. Macmillan; New York, NY, USA: 2008.
Studier F.W., Moffatt B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986;189:113–130. doi: 10.1016/0022-2836(86)90385-2. PubMed DOI
Ferrer-Miralles N., Saccardo P., Corchero J.L., Xu Z., García-Fruitós E. Insoluble Proteins. Springer; New York, NY, USA: 2015. General introduction: Recombinant protein production and purification of insoluble proteins; pp. 1–24. PubMed
Sadhukhan S., Villa R., Sarkar U. Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery. Biotechnol. Rep. 2016;10:84–93. doi: 10.1016/j.btre.2016.03.008. PubMed DOI PMC
Kim B.H., Gadd G.M. Bacterial Physiology and Metabolism. Cambridge University Press; Cambridge, UK: 2008.
Soetaert K., Petzoldt T. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. J. Stat. Softw. Artic. 2010;33:1–28.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015.
Beneš N., Brim L., Demko M., Pastva S., Šafránek D. FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus, 9–11 November 2016. Springer; New York, NY, USA: 2016. A model checking approach to discrete bifurcation analysis; pp. 85–101.
Brim L., Demko M., Pastva S., Šafránek D. Hybrid Systems Biology. Springer; New York, NY, USA: 2015. High-Performance Discrete Bifurcation Analysis for Piecewise-Affine Dynamical Systems; pp. 58–74.
Hajnal M., Šafránek D., Demko M., Pastva S., Krejčí P., Brim L. Toward Modelling and Analysis of Transient and Sustained Behaviour of Signalling Pathways; Proceedings of the HSB 2016; Grenoble, France. 20–21 October 2016; New York, NY, USA: Springer; 2016. pp. 57–66.
Barnat J., Beneš N., Brim L., Demko M., Hajnal M., Pastva S., Šafránek D. Detecting Attractors in Biological Models with Uncertain Parameters; Proceedings of the International Conference on Computational Methods in Systems Biology (CMSB); Darmstadt, Germany. 27–29 September 2017; New York, NY, USA: Springer; 2017. pp. 40–56.
Beneš N., Brim L., Pastva S., Šafránek D., Troják M., Červenỳ J., Šalagovič J. Fully Automated Attractor Analysis of Cyanobacteria Models; Proceedings of the 2018 22nd IEEE International Conference on System Theory, Control and Computing (ICSTCC); Sinaia, Romania. 10–12 October 2018; pp. 354–359.
Jia B., Jeon C.O. High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biol. 2016;6:160196. doi: 10.1098/rsob.160196. PubMed DOI PMC
Vilar J.M., Guet C.C., Leibler S. Modeling network dynamics: The lac operon, a case study. J. Cell Biol. 2003;161:471–476. doi: 10.1083/jcb.200301125. PubMed DOI PMC
Santillán M., Mackey M., Zeron E. Origin of bistability in the lac operon. Biophys. J. 2007;92:3830–3842. doi: 10.1529/biophysj.106.101717. PubMed DOI PMC
Tessier G. Les lois quantitatives de la croissance. Ann. Physiol. Physiochim. Biol. 1936;12:527–573.
Moser H. The Dynamics of Bacterial Populations Maintained in the Chemostat. Carnegie Institution of Washington; Washington, DC, USA: 1958.
Edwards V.H. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970;12:679–712. doi: 10.1002/bit.260120504. PubMed DOI
Andrews J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968;10:707–723. doi: 10.1002/bit.260100602. DOI
Maier R.M., Pepper I.L., Gerba C.P. Environmental Microbiology. Volume 397 Academic Press; New York, NY, USA: 2009.
Wang P., Robert L., Pelletier J., Dang W.L., Taddei F., Wright A., Jun S. Robust growth of Escherichia coli. Curr. Biol. 2010;20:1099–1103. doi: 10.1016/j.cub.2010.04.045. PubMed DOI PMC