Molecular Tools for Lynx spp. qPCR Identification and STR-Based Individual Identification of Eurasian Lynx (Lynx lynx) in Forensic Casework

. 2025 May 02 ; 8 (3) : . [epub] 20250502

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40407474

Grantová podpora
VJ01010026 Program Strategic Support for the Development of Security Research 2019-2025 (IM PAKT 1)

The Eurasian lynx (Lynx lynx) is listed in CITES Appendix II and is protected under the Bern Convention and the EU Habitats Directive, yet it remains a frequent target of wildlife crime, highlighting the urgent need for reliable identification methods. This study focuses on determination and DNA quantification of the Lynx spp. using quantitative real-time PCR (qPCR). The Llynx Qplex quantification multiplex system effectively distinguishes Lynx spp. from other Feliformia species by targeting mitochondrial and nuclear markers. Additionally, we present the results of the developmental validation of the Llyn STRplex system for individual identification and databasing using six STR loci. This study followed ISFG recommendations for non-human DNA testing and developmental validation guidelines. Both systems demonstrate high sensitivity (5 pg genomic DNA for Llynx Qplex and 30 pg of mtDNA for Llyn STRplex) and high specificity to Lynx spp., confirmed by testing against 16 related Feliformia species. Robustness was evaluated, showing sensitivity to temperature variation, and both repeatability and reproducibility were successfully tested across replicates and conditions. Given that forensic casework often involves degraded and limited biological material, molecular tools must be both sensitive and specific to ensure accurate results. Developing precise and efficient tools is essential for supporting investigations of wildlife crime involving the Eurasian lynx, as well as efforts aimed at conserving the species.

Zobrazit více v PubMed

Wilson-Wilde L. Wildlife Crime: A Global Problem. Forensic Sci. Med. Pathol. 2010;6:221–222. doi: 10.1007/s12024-010-9167-8. PubMed DOI

Moreto W.D., Van Uhm D.P. Nested Complex Crime: Assessing the Convergence of Wildlife Trafficking, Organized Crime and Loose Criminal Networks. Br. J. Criminol. 2021;61:1334–1353. doi: 10.1093/bjc/azab005. DOI

Zimmerman M.E. The Black Market for Wildlife: Combating Transnational Organized Crime in the Illegal Wildlife Trade. Vanderbilt J. Transnatl. Law. 2003;36:1656–1689.

Bartlett S.E., Davidson W.S. Identification of Thunnus Tuna Species by the Polymerase Chain Reaction and Direct Sequence Analysis of Their Mitochondrial Cytochrome b Genes. Can. J. Fish. Aquat. Sci. 1991;48:309–317. doi: 10.1139/f91-043. DOI

Leeton P., Christidis L., Westerman M. Feathers from Museum Bird Skins: A Good Source of DNA for Phylogenetic Studies. Condor. 1993;95:465. doi: 10.2307/1369369. DOI

Savolainen V., Cuénoud P., Spichiger R., Martinez M.D.P., Crèvecoeur M., Manen J.-F. The Use of Herbarium Specimens in DNA Phylogenetics: Evaluation and Improvement. Plant Syst. Evol. 1995;197:87–98. doi: 10.1007/BF00984634. DOI

Spooner D.M., Anderson G.J., Jansen R.K. Chloroplast DNA Evidence for the Interrelationships of Tomtoes, Potatoes, and Pepinos (Solanaceae) Am. J. Bot. 1993;80:676–678. doi: 10.1002/j.1537-2197.1993.tb15238.x. DOI

Remsen J.V. The Importance of Continued Collecting of Bird Specimens to Ornithology and Bird Conservation. Bird Conserv. Int. 1995;5:146–180. doi: 10.1017/S095927090000099X. DOI

Ellegren H. Polymerase-Chain-Reaction (PCR) Analysis of Microsatellites: A New Approach to Studies of Genetic Relationships in Birds. Auk. 1992;109:886–895. doi: 10.2307/4088163. DOI

Primmer C.R., Møller A.P., Ellegren H. Resolving Genetic Relationships with Microsatellite Markers: A Parentage Testing System for the Swallow Hirundo rustica. Mol. Ecol. 1995;4:493–498. doi: 10.1111/j.1365-294X.1995.tb00243.x. PubMed DOI

Edwards S.V., Grahn M., Potts W.K. Dynamics of Mhc Evolution in Birds and Crocodilians: Amplification of Class II Genes with Degenerate Primers. Mol. Ecol. 1995;4:719–730. doi: 10.1111/j.1365-294X.1995.tb00272.x. PubMed DOI

Blank R.J., Huss V.A.R. DNA Divergency and Speciation In Symbiodinium (Dinophyceae) Plant Syst. Evol. 1989;163:153–163. doi: 10.1007/BF00936511. DOI

Avise J.C., Bowen B.W., Lamb T., Meylan A.B., Bermingham E. Mitochondrial DNA Evolution at a Turtle’s Pace: Evidence for Low Genetic Variability and Reduced Microevolutionary Rate in the Testudines. Mol. Biol. Evol. 1992;9:457–473. doi: 10.1093/oxfordjournals.molbev.a040735. PubMed DOI

MacFadden B.J. Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge University Press; Cambridge, UK: 1994.

Higuchi R.G., Wrischnik L.A., Oakes E., George M., Tong B., Wilson A.C. Mitochondrial DNA of the Extinct Quagga: Relatedness and Extent of Postmortem Change. J. Mol. Evol. 1987;25:283–287. doi: 10.1007/BF02603111. PubMed DOI

Guglich E., Wilson P., White B. Forensic Application of Repetitive DNA Markers to the Species Identification of Animal Tissues. J. Forensic Sci. 1994;39:353–361. doi: 10.1520/JFS13606J. PubMed DOI

Cronin M.A., Palmisciano D.A., Vyse E.R., Cameron D.G. Mitochondrial DNA in Wildlife Forensic Science: Species Identification of Tissues. Wildl. Soc. Bull. 1991;19:94–105.

Alford R.L., Caskey C.T. DNA Analysis in Forensics, Disease and Animal/Plant Identification. Curr. Opin. Biotechnol. 1994;5:29–33. doi: 10.1016/S0958-1669(05)80066-7. PubMed DOI

Hermans I.F., Atkinson J., Hamilton J.F., Chambers G.K. Three Cases of Disputed Paternity in Dogs Resolved by the Use of DNA Fingerprinting. N. Z. Vet. J. 1991;39:61–64. doi: 10.1080/00480169.1991.35662. PubMed DOI

Yoon C.K. Botanical Witness for the Prosecution. Science. 1993;260:894–895. doi: 10.1126/science.8493521. PubMed DOI

Marklund S., Sandberg K., Andersson L. Forensic Tracing of Horse Identities Using Urine Samples and DNA Markers. Anim. Biotechnol. 1996;7:145–153. doi: 10.1080/10495399609525855. DOI

Dayton M., Koskinen M.T., Tom B.K., Mattila A.-M., Johnston E., Halverson J., Fantin D., DeNise S., Budowle B., Smith D.G., et al. Developmental Validation of Short Tandem Repeat Reagent Kit for Forensic DNA Profiling of Canine Biological Materials. Croat. Med. J. 2009;50:268–285. doi: 10.3325/cmj.2009.50.268. PubMed DOI PMC

Butler J.M., David V.A., O’Brien S.J., Menotti-Raymond M. The MeowPlex: A New DNA Test Using Tetranucleotide STR Markers for the Domestic Cat. Profiles DNA. 2002;5:7.

Imaizumi K., Akutsu T., Miyasaka S., Yoshino M. Development of Species Identification Tests Targeting the 16S Ribosomal RNA Coding Region in Mitochondrial DNA. Int. J. Leg. Med. 2007;121:184–191. doi: 10.1007/s00414-006-0127-5. PubMed DOI

Budowle B., Garofano P., Hellman A., Ketchum M., Kanthaswamy S., Parson W., van Haeringen W., Fain S., Broad T. Recommendations for Animal DNA Forensic and Identity Testing. Int. J. Leg. Med. 2005;119:295–302. doi: 10.1007/s00414-005-0545-9. PubMed DOI

Linacre A., Gusmão L., Hecht W., Hellmann A.P., Mayr W.R., Parson W., Prinz M., Schneider P.M., Morling N. ISFG: Recommendations Regarding the Use of Non-Human (Animal) DNA in Forensic Genetic Investigations. Forensic Sci. Int. Genet. 2011;5:501–505. doi: 10.1016/j.fsigen.2010.10.017. PubMed DOI

Harper C.K. Wildlife Biodiversity Conservation. Springer International Publishing; Cham, Switzerland: 2021. RhODIS® (The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros; pp. 463–485.

Harper C.K., Vermeulen G.J., Clarke A.B., de Wet J.I., Guthrie A.J. Extraction of Nuclear DNA from Rhinoceros Horn and Characterization of DNA Profiling Systems for White (Ceratotherium simum) and Black (Diceros bicornis) Rhinoceros. Forensic Sci. Int. Genet. 2013;7:428–433. doi: 10.1016/j.fsigen.2013.04.003. PubMed DOI

Wasser S.K., Mailand C., Booth R., Mutayoba B., Kisamo E., Clark B., Stephens M. Using DNA to Track the Origin of the Largest Ivory Seizure since the 1989 Trade Ban. Proc. Natl. Acad. Sci. USA. 2007;104:4228–4233. doi: 10.1073/pnas.0609714104. PubMed DOI PMC

Wasser S.K., Brown L., Mailand C., Mondol S., Clark W., Laurie C., Weir B.S. Genetic Assignment of Large Seizures of Elephant Ivory Reveals Africa’s Major Poaching Hotspots. Science. 2015;349:84–87. doi: 10.1126/science.aaa2457. PubMed DOI PMC

Wasser S.K., Clark W.J., Drori O., Kisamo S.E., Mailand C., Mutayoba B., Stephens M. Combating the Illegal Trade in African Elephant Ivory with DNA Forensics. Conserv. Biol. 2008;22:1065–1071. doi: 10.1111/j.1523-1739.2008.01012.x. PubMed DOI

Wasser S.K., Wolock C.J., Kuhner M.K., Brown J.E., Morris C., Horwitz R.J., Wong A., Fernandez C.J., Otiende M.Y., Hoareau Y., et al. Elephant Genotypes Reveal the Size and Connectivity of Transnational Ivory Traffickers. Nat. Hum. Behav. 2022;6:371–382. doi: 10.1038/s41562-021-01267-6. PubMed DOI PMC

Vankova L., Vanek D. DNA-Based Identification of Big Cats and Traditional Chinese Medicine Artifacts in the Czech Republic. Forensic Sci. Int. Genet. Suppl. Ser. 2022;8:122–124. doi: 10.1016/j.fsigss.2022.10.005. DOI

Vankova L., Vanek D. Capillary-Electrophoresis-Based Species Barcoding of Big Cats: CR-MtDNA-Length Polymorphism. Life. 2024;14:497. doi: 10.3390/life14040497. PubMed DOI PMC

Vaněk D., Ehler E., Vaňková L. Technical Note: Development of DNA Quantitation and STR Typing Systems for Panthera Tigris Species Determination and Individual Identification in Forensic Casework. Eur. J. Environ. Sci. 2021;11:113–118. doi: 10.14712/23361964.2021.13. DOI

Hebenstreitova K., Salaba O., Trubac J., Kufnerova J., Vanek D. The Influence of Tanning Chemical Agents on DNA Degradation: A Robust Procedure for the Analysis of Tanned Animal Hide—A Pilot Study. Life. 2024;14:147. doi: 10.3390/life14010147. PubMed DOI PMC

Morf N.V., Kopps A.M., Nater A., Lendvay B., Vasiljevic N., Webster L.M.I., Fautley R.G., Ogden R., Kratzer A. STRoe Deer: A Validated Forensic STR Profiling System for the European Roe Deer (Capreolus capreolus) Forensic Sci. Int. Anim. Environ. 2021;1:100023. doi: 10.1016/j.fsiae.2021.100023. DOI

Meredith E.P., Adkins J.K., Rodzen J.A. UrsaPlex: An STR Multiplex for Forensic Identification of North American Black Bear (Ursus americanus) Forensic Sci. Int. Genet. 2020;44:102161. doi: 10.1016/j.fsigen.2019.102161. PubMed DOI

Friedenberger A., Doyle C., Couillard L., Kyle C.J. The Bear Necessities: A Sensitive QPCR Assay for Bear DNA Detection from Bile and Derived Products to Complement Wildlife Forensic Enforcement. Forensic Sci. Int. Genet. 2023;67:102935. doi: 10.1016/j.fsigen.2023.102935. PubMed DOI

Hrebianchuk A.E., Parfionava N.S., Zabauskaya T.V., Tsybovsky I.S. A Panel of Tetranucleotide STR Markers as an Alternative Approach to Forensic DNA Identification of Wolf and Dog. Anim. Genet. 2024;55:440–451. doi: 10.1111/age.13428. PubMed DOI

Berger B., Berger C., Hecht W., Hellmann A., Rohleder U., Schleenbecker U., Parson W. Validation of Two Canine STR Multiplex-Assays Following the ISFG Recommendations for Non-Human DNA Analysis. Forensic Sci. Int. Genet. 2014;8:90–100. doi: 10.1016/j.fsigen.2013.07.002. PubMed DOI

Selkoe K.A., Toonen R.J. Microsatellites for Ecologists: A Practical Guide to Using and Evaluating Microsatellite Markers. Ecol. Lett. 2006;9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x. PubMed DOI

Rueness E.K., Jorde P.E., Hellborg L., Stenseth N.C., Ellegren H., Jakobsen K.S. Cryptic Population Structure in a Large, Mobile Mammalian Predator: The Scandinavian Lynx. Mol. Ecol. 2003;12:2623–2633. doi: 10.1046/j.1365-294X.2003.01952.x. PubMed DOI

Herrero A., Klütsch C.F.C., Holmala K., Maduna S.N., Kopatz A., Eiken H.G., Hagen S.B. Genetic Analysis Indicates Spatial-Dependent Patterns of Sex-Biased Dispersal in Eurasian Lynx in Finland. PLoS ONE. 2021;16:e0246833. doi: 10.1371/journal.pone.0246833. PubMed DOI PMC

Carmichael L.E., Clark W., Strobeck C. Development and Characterization of Microsatellite Loci from Lynx (Lynx canadensis), and Their Use in Other Felids. Mol. Ecol. 2000;9:2197–2199. doi: 10.1046/j.1365-294X.2000.105323.x. PubMed DOI

Krojerová-Prokešová J., Turbaková B., Jelenčič M., Bojda M., Kutal M., Skrbinšek T., Koubek P., Bryja J. Genetic Constraints of Population Expansion of the Carpathian Lynx at the Western Edge of Its Native Distribution Range in Central Europe. Heredity. 2019;122:785–799. doi: 10.1038/s41437-018-0167-x. PubMed DOI PMC

Gajdárová B., Belotti E., Bufka L., Volfová J., Wölfl S., Mináriková T., Hollerbach L., Duľa M., Kleven O., Kutal M., et al. Long-Term Genetic Monitoring of a Reintroduced Eurasian Lynx Population Does Not Indicate an Ongoing Loss of Genetic Diversity. Glob. Ecol. Conserv. 2023;42:e02399. doi: 10.1016/j.gecco.2023.e02399. DOI

Janečka J.E., Blankenship T.L., Hirth D.H., Tewes M.E., Kilpatrick C.W., Grassman L.I. Kinship and Social Structure of Bobcats (Lynx rufus) Inferred from Microsatellite and Radio-telemetry Data. J. Zool. 2006;269:494–501. doi: 10.1111/j.1469-7998.2006.00099.x. DOI

Palormes F., Godoy J.A., López-Bao J.V., Rodríguez A., Roques S., Casas-Marce M., Revilla E., Delibes M. Possible Extinction Vortex for a Population of Iberian Lynx on the Verge of Extirpation. Conserv. Biol. 2012;26:689–697. doi: 10.1111/j.1523-1739.2012.01870.x. PubMed DOI

Jun J., Han S.H., Jeong T.-J., Park H.C., Lee B., Kwak M. Wildlife Forensics Using Mitochondrial DNA Sequences: Species Identification Based on Hairs Collected in the Field and Confiscated Tanned Felidae Leathers. Genes Genom. 2011;33:721–726. doi: 10.1007/s13258-011-0080-7. DOI

Waits L.P., Paetkau D. Non-Invasive Genetic Sampling Tools for Wildlife Biologists: A Review of Applications and Recommendations for Accurate Data Collection. J. Wildl. Manag. 2005;69:1419–1433. doi: 10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2. DOI

Simbolo M., Gottardi M., Corbo V., Fassan M., Mafficini A., Malpeli G., Lawlor R.T., Scarpa A. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples. PLoS ONE. 2013;8:e62692. doi: 10.1371/journal.pone.0062692. PubMed DOI PMC

Lee S.B., McCord B., Buel E. Advances in Forensic DNA Quantification: A Review. Electrophoresis. 2014;35:3044–3052. doi: 10.1002/elps.201400187. PubMed DOI

Červený J., Koubek P., Bufka L. Eurasian Lynx (Lynx lynx) and Its Chance for Survival in Central Europe: The Case of the Czech Republic. Acta Zool. Litu. 2002;12:428–432. doi: 10.1080/13921657.2002.10512534. DOI

Schmidt K., Ratkiewicz M., Konopinski M.K. The Importance of Genetic Variability and Population Differentiation in the Eurasian Lynx Lynx lynx for Conservation, in the Context of Habitat and Climate Change. Mammal Rev. 2011;41:112–124. doi: 10.1111/j.1365-2907.2010.00180.x. DOI

Sommer R.S., Benecke N. Late Pleistocene and Holocene Development of the Felid Fauna (Felidae) of Europe: A Review. J. Zool. 2006;269:7–19. doi: 10.1111/j.1469-7998.2005.00040.x. DOI

Arlettaz R., Chapron G., Kéry M., Klaus E., Mettaz S., Roder S., Vignali S., Zimmermann F., Braunisch V. Poaching Threatens the Establishment of a Lynx Population, Highlighting the Need for a Centralized Judiciary Approach. Front. Conserv. Sci. 2021;2:665000. doi: 10.3389/fcosc.2021.665000. DOI

Menotti-Raymond M., David V.A., Lyons L.A., Schäffer A.A., Tomlin J.F., Hutton M.K., O’Brien S.J. A Genetic Linkage Map of Microsatellites in the Domestic Cat (Felis catus) Genomics. 1999;57:9–23. doi: 10.1006/geno.1999.5743. PubMed DOI

Pilgrim K.L., McKeley K.S., Riddle A.E., Schwartz M.K. Felid Sex Identification Based on Noninvasive Genetic Samples. Mol. Ecol. Notes. 2005;5:60–61. doi: 10.1111/j.1471-8286.2004.00831.x. DOI

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC

Ng K.K.S., Lee S.L., Tnah L.H., Nurul-Farhanah Z., Ng C.H., Lee C.T., Tani N., Diway B., Lai P.S., Khoo E. Forensic Timber Identification: A Case Study of a CITES Listed Species, Gonystylus bancanus (Thymelaeaceae) Forensic Sci. Int. Genet. 2016;23:197–209. doi: 10.1016/j.fsigen.2016.05.002. PubMed DOI

Potoczniak M.J., Chermak M., Quarino L., Tobe S.S., Conte J. Development of a Multiplex, PCR-Based Genotyping Assay for African and Asian Elephants for Forensic Purposes. Int. J. Leg. Med. 2020;134:55–62. doi: 10.1007/s00414-019-02097-y. PubMed DOI

Gill P., Whitaker J., Flaxman C., Brown N., Buckleton J. An Investigation of the Rigor of Interpretation Rules for STRs Derived from Less than 100 Pg of DNA. Forensic Sci. Int. 2000;112:17–40. doi: 10.1016/S0379-0738(00)00158-4. PubMed DOI

Schrader C., Schielke A., Ellerbroek L., Johne R. PCR Inhibitors—Occurrence, Properties and Removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI

Sidstedt M., Jansson L., Nilsson E., Noppa L., Forsman M., Rådström P., Hedman J. Humic Substances Cause Fluorescence Inhibition in Real-Time Polymerase Chain Reaction. Anal. Biochem. 2015;487:30–37. doi: 10.1016/j.ab.2015.07.002. PubMed DOI

Sidstedt M., Rådström P., Hedman J. PCR Inhibition in QPCR, DPCR and MPS—Mechanisms and Solutions. Anal. Bioanal. Chem. 2020;412:2009–2023. doi: 10.1007/s00216-020-02490-2. PubMed DOI PMC

Polner M., Moell D. Environmental Crime and Collaborative State Intervention. Palgrave Macmillan; London, UK: 2016. Interagency Collaboration and Combating Wildlife Crime; pp. 59–75.

Van Asch E. Ph.D. Thesis. University of Sheffield; Sheffield, UK: 2017. Exploring the Effectiveness of International Cooperation to Combat Transnational Organized Wildlife Crime: Lessons Learned from Initiatives in Asia.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...