Molecular Tools for Lynx spp. qPCR Identification and STR-Based Individual Identification of Eurasian Lynx (Lynx lynx) in Forensic Casework
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VJ01010026
Program Strategic Support for the Development of Security Research 2019-2025 (IM PAKT 1)
PubMed
40407474
PubMed Central
PMC12101276
DOI
10.3390/mps8030047
PII: mps8030047
Knihovny.cz E-zdroje
- Klíčová slova
- Cyt b, Felidae, Feliformia, wildlife crime, wildlife trade,
- Publikační typ
- časopisecké články MeSH
The Eurasian lynx (Lynx lynx) is listed in CITES Appendix II and is protected under the Bern Convention and the EU Habitats Directive, yet it remains a frequent target of wildlife crime, highlighting the urgent need for reliable identification methods. This study focuses on determination and DNA quantification of the Lynx spp. using quantitative real-time PCR (qPCR). The Llynx Qplex quantification multiplex system effectively distinguishes Lynx spp. from other Feliformia species by targeting mitochondrial and nuclear markers. Additionally, we present the results of the developmental validation of the Llyn STRplex system for individual identification and databasing using six STR loci. This study followed ISFG recommendations for non-human DNA testing and developmental validation guidelines. Both systems demonstrate high sensitivity (5 pg genomic DNA for Llynx Qplex and 30 pg of mtDNA for Llyn STRplex) and high specificity to Lynx spp., confirmed by testing against 16 related Feliformia species. Robustness was evaluated, showing sensitivity to temperature variation, and both repeatability and reproducibility were successfully tested across replicates and conditions. Given that forensic casework often involves degraded and limited biological material, molecular tools must be both sensitive and specific to ensure accurate results. Developing precise and efficient tools is essential for supporting investigations of wildlife crime involving the Eurasian lynx, as well as efforts aimed at conserving the species.
Department of Legal Forensic Medicine Bulovka University Hospital 180 00 Prague Czech Republic
Forensic DNA Service 170 00 Prague Czech Republic
Institute for Environmental Studies Charles University 128 01 Prague Czech Republic
Zobrazit více v PubMed
Wilson-Wilde L. Wildlife Crime: A Global Problem. Forensic Sci. Med. Pathol. 2010;6:221–222. doi: 10.1007/s12024-010-9167-8. PubMed DOI
Moreto W.D., Van Uhm D.P. Nested Complex Crime: Assessing the Convergence of Wildlife Trafficking, Organized Crime and Loose Criminal Networks. Br. J. Criminol. 2021;61:1334–1353. doi: 10.1093/bjc/azab005. DOI
Zimmerman M.E. The Black Market for Wildlife: Combating Transnational Organized Crime in the Illegal Wildlife Trade. Vanderbilt J. Transnatl. Law. 2003;36:1656–1689.
Bartlett S.E., Davidson W.S. Identification of Thunnus Tuna Species by the Polymerase Chain Reaction and Direct Sequence Analysis of Their Mitochondrial Cytochrome b Genes. Can. J. Fish. Aquat. Sci. 1991;48:309–317. doi: 10.1139/f91-043. DOI
Leeton P., Christidis L., Westerman M. Feathers from Museum Bird Skins: A Good Source of DNA for Phylogenetic Studies. Condor. 1993;95:465. doi: 10.2307/1369369. DOI
Savolainen V., Cuénoud P., Spichiger R., Martinez M.D.P., Crèvecoeur M., Manen J.-F. The Use of Herbarium Specimens in DNA Phylogenetics: Evaluation and Improvement. Plant Syst. Evol. 1995;197:87–98. doi: 10.1007/BF00984634. DOI
Spooner D.M., Anderson G.J., Jansen R.K. Chloroplast DNA Evidence for the Interrelationships of Tomtoes, Potatoes, and Pepinos (Solanaceae) Am. J. Bot. 1993;80:676–678. doi: 10.1002/j.1537-2197.1993.tb15238.x. DOI
Remsen J.V. The Importance of Continued Collecting of Bird Specimens to Ornithology and Bird Conservation. Bird Conserv. Int. 1995;5:146–180. doi: 10.1017/S095927090000099X. DOI
Ellegren H. Polymerase-Chain-Reaction (PCR) Analysis of Microsatellites: A New Approach to Studies of Genetic Relationships in Birds. Auk. 1992;109:886–895. doi: 10.2307/4088163. DOI
Primmer C.R., Møller A.P., Ellegren H. Resolving Genetic Relationships with Microsatellite Markers: A Parentage Testing System for the Swallow Hirundo rustica. Mol. Ecol. 1995;4:493–498. doi: 10.1111/j.1365-294X.1995.tb00243.x. PubMed DOI
Edwards S.V., Grahn M., Potts W.K. Dynamics of Mhc Evolution in Birds and Crocodilians: Amplification of Class II Genes with Degenerate Primers. Mol. Ecol. 1995;4:719–730. doi: 10.1111/j.1365-294X.1995.tb00272.x. PubMed DOI
Blank R.J., Huss V.A.R. DNA Divergency and Speciation In Symbiodinium (Dinophyceae) Plant Syst. Evol. 1989;163:153–163. doi: 10.1007/BF00936511. DOI
Avise J.C., Bowen B.W., Lamb T., Meylan A.B., Bermingham E. Mitochondrial DNA Evolution at a Turtle’s Pace: Evidence for Low Genetic Variability and Reduced Microevolutionary Rate in the Testudines. Mol. Biol. Evol. 1992;9:457–473. doi: 10.1093/oxfordjournals.molbev.a040735. PubMed DOI
MacFadden B.J. Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge University Press; Cambridge, UK: 1994.
Higuchi R.G., Wrischnik L.A., Oakes E., George M., Tong B., Wilson A.C. Mitochondrial DNA of the Extinct Quagga: Relatedness and Extent of Postmortem Change. J. Mol. Evol. 1987;25:283–287. doi: 10.1007/BF02603111. PubMed DOI
Guglich E., Wilson P., White B. Forensic Application of Repetitive DNA Markers to the Species Identification of Animal Tissues. J. Forensic Sci. 1994;39:353–361. doi: 10.1520/JFS13606J. PubMed DOI
Cronin M.A., Palmisciano D.A., Vyse E.R., Cameron D.G. Mitochondrial DNA in Wildlife Forensic Science: Species Identification of Tissues. Wildl. Soc. Bull. 1991;19:94–105.
Alford R.L., Caskey C.T. DNA Analysis in Forensics, Disease and Animal/Plant Identification. Curr. Opin. Biotechnol. 1994;5:29–33. doi: 10.1016/S0958-1669(05)80066-7. PubMed DOI
Hermans I.F., Atkinson J., Hamilton J.F., Chambers G.K. Three Cases of Disputed Paternity in Dogs Resolved by the Use of DNA Fingerprinting. N. Z. Vet. J. 1991;39:61–64. doi: 10.1080/00480169.1991.35662. PubMed DOI
Yoon C.K. Botanical Witness for the Prosecution. Science. 1993;260:894–895. doi: 10.1126/science.8493521. PubMed DOI
Marklund S., Sandberg K., Andersson L. Forensic Tracing of Horse Identities Using Urine Samples and DNA Markers. Anim. Biotechnol. 1996;7:145–153. doi: 10.1080/10495399609525855. DOI
Dayton M., Koskinen M.T., Tom B.K., Mattila A.-M., Johnston E., Halverson J., Fantin D., DeNise S., Budowle B., Smith D.G., et al. Developmental Validation of Short Tandem Repeat Reagent Kit for Forensic DNA Profiling of Canine Biological Materials. Croat. Med. J. 2009;50:268–285. doi: 10.3325/cmj.2009.50.268. PubMed DOI PMC
Butler J.M., David V.A., O’Brien S.J., Menotti-Raymond M. The MeowPlex: A New DNA Test Using Tetranucleotide STR Markers for the Domestic Cat. Profiles DNA. 2002;5:7.
Imaizumi K., Akutsu T., Miyasaka S., Yoshino M. Development of Species Identification Tests Targeting the 16S Ribosomal RNA Coding Region in Mitochondrial DNA. Int. J. Leg. Med. 2007;121:184–191. doi: 10.1007/s00414-006-0127-5. PubMed DOI
Budowle B., Garofano P., Hellman A., Ketchum M., Kanthaswamy S., Parson W., van Haeringen W., Fain S., Broad T. Recommendations for Animal DNA Forensic and Identity Testing. Int. J. Leg. Med. 2005;119:295–302. doi: 10.1007/s00414-005-0545-9. PubMed DOI
Linacre A., Gusmão L., Hecht W., Hellmann A.P., Mayr W.R., Parson W., Prinz M., Schneider P.M., Morling N. ISFG: Recommendations Regarding the Use of Non-Human (Animal) DNA in Forensic Genetic Investigations. Forensic Sci. Int. Genet. 2011;5:501–505. doi: 10.1016/j.fsigen.2010.10.017. PubMed DOI
Harper C.K. Wildlife Biodiversity Conservation. Springer International Publishing; Cham, Switzerland: 2021. RhODIS® (The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros; pp. 463–485.
Harper C.K., Vermeulen G.J., Clarke A.B., de Wet J.I., Guthrie A.J. Extraction of Nuclear DNA from Rhinoceros Horn and Characterization of DNA Profiling Systems for White (Ceratotherium simum) and Black (Diceros bicornis) Rhinoceros. Forensic Sci. Int. Genet. 2013;7:428–433. doi: 10.1016/j.fsigen.2013.04.003. PubMed DOI
Wasser S.K., Mailand C., Booth R., Mutayoba B., Kisamo E., Clark B., Stephens M. Using DNA to Track the Origin of the Largest Ivory Seizure since the 1989 Trade Ban. Proc. Natl. Acad. Sci. USA. 2007;104:4228–4233. doi: 10.1073/pnas.0609714104. PubMed DOI PMC
Wasser S.K., Brown L., Mailand C., Mondol S., Clark W., Laurie C., Weir B.S. Genetic Assignment of Large Seizures of Elephant Ivory Reveals Africa’s Major Poaching Hotspots. Science. 2015;349:84–87. doi: 10.1126/science.aaa2457. PubMed DOI PMC
Wasser S.K., Clark W.J., Drori O., Kisamo S.E., Mailand C., Mutayoba B., Stephens M. Combating the Illegal Trade in African Elephant Ivory with DNA Forensics. Conserv. Biol. 2008;22:1065–1071. doi: 10.1111/j.1523-1739.2008.01012.x. PubMed DOI
Wasser S.K., Wolock C.J., Kuhner M.K., Brown J.E., Morris C., Horwitz R.J., Wong A., Fernandez C.J., Otiende M.Y., Hoareau Y., et al. Elephant Genotypes Reveal the Size and Connectivity of Transnational Ivory Traffickers. Nat. Hum. Behav. 2022;6:371–382. doi: 10.1038/s41562-021-01267-6. PubMed DOI PMC
Vankova L., Vanek D. DNA-Based Identification of Big Cats and Traditional Chinese Medicine Artifacts in the Czech Republic. Forensic Sci. Int. Genet. Suppl. Ser. 2022;8:122–124. doi: 10.1016/j.fsigss.2022.10.005. DOI
Vankova L., Vanek D. Capillary-Electrophoresis-Based Species Barcoding of Big Cats: CR-MtDNA-Length Polymorphism. Life. 2024;14:497. doi: 10.3390/life14040497. PubMed DOI PMC
Vaněk D., Ehler E., Vaňková L. Technical Note: Development of DNA Quantitation and STR Typing Systems for Panthera Tigris Species Determination and Individual Identification in Forensic Casework. Eur. J. Environ. Sci. 2021;11:113–118. doi: 10.14712/23361964.2021.13. DOI
Hebenstreitova K., Salaba O., Trubac J., Kufnerova J., Vanek D. The Influence of Tanning Chemical Agents on DNA Degradation: A Robust Procedure for the Analysis of Tanned Animal Hide—A Pilot Study. Life. 2024;14:147. doi: 10.3390/life14010147. PubMed DOI PMC
Morf N.V., Kopps A.M., Nater A., Lendvay B., Vasiljevic N., Webster L.M.I., Fautley R.G., Ogden R., Kratzer A. STRoe Deer: A Validated Forensic STR Profiling System for the European Roe Deer (Capreolus capreolus) Forensic Sci. Int. Anim. Environ. 2021;1:100023. doi: 10.1016/j.fsiae.2021.100023. DOI
Meredith E.P., Adkins J.K., Rodzen J.A. UrsaPlex: An STR Multiplex for Forensic Identification of North American Black Bear (Ursus americanus) Forensic Sci. Int. Genet. 2020;44:102161. doi: 10.1016/j.fsigen.2019.102161. PubMed DOI
Friedenberger A., Doyle C., Couillard L., Kyle C.J. The Bear Necessities: A Sensitive QPCR Assay for Bear DNA Detection from Bile and Derived Products to Complement Wildlife Forensic Enforcement. Forensic Sci. Int. Genet. 2023;67:102935. doi: 10.1016/j.fsigen.2023.102935. PubMed DOI
Hrebianchuk A.E., Parfionava N.S., Zabauskaya T.V., Tsybovsky I.S. A Panel of Tetranucleotide STR Markers as an Alternative Approach to Forensic DNA Identification of Wolf and Dog. Anim. Genet. 2024;55:440–451. doi: 10.1111/age.13428. PubMed DOI
Berger B., Berger C., Hecht W., Hellmann A., Rohleder U., Schleenbecker U., Parson W. Validation of Two Canine STR Multiplex-Assays Following the ISFG Recommendations for Non-Human DNA Analysis. Forensic Sci. Int. Genet. 2014;8:90–100. doi: 10.1016/j.fsigen.2013.07.002. PubMed DOI
Selkoe K.A., Toonen R.J. Microsatellites for Ecologists: A Practical Guide to Using and Evaluating Microsatellite Markers. Ecol. Lett. 2006;9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x. PubMed DOI
Rueness E.K., Jorde P.E., Hellborg L., Stenseth N.C., Ellegren H., Jakobsen K.S. Cryptic Population Structure in a Large, Mobile Mammalian Predator: The Scandinavian Lynx. Mol. Ecol. 2003;12:2623–2633. doi: 10.1046/j.1365-294X.2003.01952.x. PubMed DOI
Herrero A., Klütsch C.F.C., Holmala K., Maduna S.N., Kopatz A., Eiken H.G., Hagen S.B. Genetic Analysis Indicates Spatial-Dependent Patterns of Sex-Biased Dispersal in Eurasian Lynx in Finland. PLoS ONE. 2021;16:e0246833. doi: 10.1371/journal.pone.0246833. PubMed DOI PMC
Carmichael L.E., Clark W., Strobeck C. Development and Characterization of Microsatellite Loci from Lynx (Lynx canadensis), and Their Use in Other Felids. Mol. Ecol. 2000;9:2197–2199. doi: 10.1046/j.1365-294X.2000.105323.x. PubMed DOI
Krojerová-Prokešová J., Turbaková B., Jelenčič M., Bojda M., Kutal M., Skrbinšek T., Koubek P., Bryja J. Genetic Constraints of Population Expansion of the Carpathian Lynx at the Western Edge of Its Native Distribution Range in Central Europe. Heredity. 2019;122:785–799. doi: 10.1038/s41437-018-0167-x. PubMed DOI PMC
Gajdárová B., Belotti E., Bufka L., Volfová J., Wölfl S., Mináriková T., Hollerbach L., Duľa M., Kleven O., Kutal M., et al. Long-Term Genetic Monitoring of a Reintroduced Eurasian Lynx Population Does Not Indicate an Ongoing Loss of Genetic Diversity. Glob. Ecol. Conserv. 2023;42:e02399. doi: 10.1016/j.gecco.2023.e02399. DOI
Janečka J.E., Blankenship T.L., Hirth D.H., Tewes M.E., Kilpatrick C.W., Grassman L.I. Kinship and Social Structure of Bobcats (Lynx rufus) Inferred from Microsatellite and Radio-telemetry Data. J. Zool. 2006;269:494–501. doi: 10.1111/j.1469-7998.2006.00099.x. DOI
Palormes F., Godoy J.A., López-Bao J.V., Rodríguez A., Roques S., Casas-Marce M., Revilla E., Delibes M. Possible Extinction Vortex for a Population of Iberian Lynx on the Verge of Extirpation. Conserv. Biol. 2012;26:689–697. doi: 10.1111/j.1523-1739.2012.01870.x. PubMed DOI
Jun J., Han S.H., Jeong T.-J., Park H.C., Lee B., Kwak M. Wildlife Forensics Using Mitochondrial DNA Sequences: Species Identification Based on Hairs Collected in the Field and Confiscated Tanned Felidae Leathers. Genes Genom. 2011;33:721–726. doi: 10.1007/s13258-011-0080-7. DOI
Waits L.P., Paetkau D. Non-Invasive Genetic Sampling Tools for Wildlife Biologists: A Review of Applications and Recommendations for Accurate Data Collection. J. Wildl. Manag. 2005;69:1419–1433. doi: 10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2. DOI
Simbolo M., Gottardi M., Corbo V., Fassan M., Mafficini A., Malpeli G., Lawlor R.T., Scarpa A. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples. PLoS ONE. 2013;8:e62692. doi: 10.1371/journal.pone.0062692. PubMed DOI PMC
Lee S.B., McCord B., Buel E. Advances in Forensic DNA Quantification: A Review. Electrophoresis. 2014;35:3044–3052. doi: 10.1002/elps.201400187. PubMed DOI
Červený J., Koubek P., Bufka L. Eurasian Lynx (Lynx lynx) and Its Chance for Survival in Central Europe: The Case of the Czech Republic. Acta Zool. Litu. 2002;12:428–432. doi: 10.1080/13921657.2002.10512534. DOI
Schmidt K., Ratkiewicz M., Konopinski M.K. The Importance of Genetic Variability and Population Differentiation in the Eurasian Lynx Lynx lynx for Conservation, in the Context of Habitat and Climate Change. Mammal Rev. 2011;41:112–124. doi: 10.1111/j.1365-2907.2010.00180.x. DOI
Sommer R.S., Benecke N. Late Pleistocene and Holocene Development of the Felid Fauna (Felidae) of Europe: A Review. J. Zool. 2006;269:7–19. doi: 10.1111/j.1469-7998.2005.00040.x. DOI
Arlettaz R., Chapron G., Kéry M., Klaus E., Mettaz S., Roder S., Vignali S., Zimmermann F., Braunisch V. Poaching Threatens the Establishment of a Lynx Population, Highlighting the Need for a Centralized Judiciary Approach. Front. Conserv. Sci. 2021;2:665000. doi: 10.3389/fcosc.2021.665000. DOI
Menotti-Raymond M., David V.A., Lyons L.A., Schäffer A.A., Tomlin J.F., Hutton M.K., O’Brien S.J. A Genetic Linkage Map of Microsatellites in the Domestic Cat (Felis catus) Genomics. 1999;57:9–23. doi: 10.1006/geno.1999.5743. PubMed DOI
Pilgrim K.L., McKeley K.S., Riddle A.E., Schwartz M.K. Felid Sex Identification Based on Noninvasive Genetic Samples. Mol. Ecol. Notes. 2005;5:60–61. doi: 10.1111/j.1471-8286.2004.00831.x. DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Ng K.K.S., Lee S.L., Tnah L.H., Nurul-Farhanah Z., Ng C.H., Lee C.T., Tani N., Diway B., Lai P.S., Khoo E. Forensic Timber Identification: A Case Study of a CITES Listed Species, Gonystylus bancanus (Thymelaeaceae) Forensic Sci. Int. Genet. 2016;23:197–209. doi: 10.1016/j.fsigen.2016.05.002. PubMed DOI
Potoczniak M.J., Chermak M., Quarino L., Tobe S.S., Conte J. Development of a Multiplex, PCR-Based Genotyping Assay for African and Asian Elephants for Forensic Purposes. Int. J. Leg. Med. 2020;134:55–62. doi: 10.1007/s00414-019-02097-y. PubMed DOI
Gill P., Whitaker J., Flaxman C., Brown N., Buckleton J. An Investigation of the Rigor of Interpretation Rules for STRs Derived from Less than 100 Pg of DNA. Forensic Sci. Int. 2000;112:17–40. doi: 10.1016/S0379-0738(00)00158-4. PubMed DOI
Schrader C., Schielke A., Ellerbroek L., Johne R. PCR Inhibitors—Occurrence, Properties and Removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI
Sidstedt M., Jansson L., Nilsson E., Noppa L., Forsman M., Rådström P., Hedman J. Humic Substances Cause Fluorescence Inhibition in Real-Time Polymerase Chain Reaction. Anal. Biochem. 2015;487:30–37. doi: 10.1016/j.ab.2015.07.002. PubMed DOI
Sidstedt M., Rådström P., Hedman J. PCR Inhibition in QPCR, DPCR and MPS—Mechanisms and Solutions. Anal. Bioanal. Chem. 2020;412:2009–2023. doi: 10.1007/s00216-020-02490-2. PubMed DOI PMC
Polner M., Moell D. Environmental Crime and Collaborative State Intervention. Palgrave Macmillan; London, UK: 2016. Interagency Collaboration and Combating Wildlife Crime; pp. 59–75.
Van Asch E. Ph.D. Thesis. University of Sheffield; Sheffield, UK: 2017. Exploring the Effectiveness of International Cooperation to Combat Transnational Organized Wildlife Crime: Lessons Learned from Initiatives in Asia.