Cytotoxic effects and comparative analysis of Ni ion uptake by osteoarthritic and physiological osteoblasts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
NU20-08-00149
Ministry of Health Foundation
PubMed
38997414
PubMed Central
PMC11245524
DOI
10.1038/s41598-024-67157-9
PII: 10.1038/s41598-024-67157-9
Knihovny.cz E-zdroje
- Klíčová slova
- Implant debris, Laser ablation, Metal distribution, Metal uptake, Nickel, Osteoblasts,
- MeSH
- buněčný cyklus účinky léků MeSH
- ionty metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- nikl * metabolismus MeSH
- osteoartróza * metabolismus patologie MeSH
- osteoblasty * metabolismus účinky léků MeSH
- proliferace buněk * účinky léků MeSH
- viabilita buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- ionty MeSH
- nikl * MeSH
Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.
1st Department of Orthopaedics St Anne`S University Hospital Pekarska 53 Brno Czech Republic
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno Czech Republic
Department of Orthopaedic Surgery University Hospital Jihlavska 20 Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University Kamenice 5 Brno Czech Republic
Zobrazit více v PubMed
Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Polish J. Environ. Stud. 2006;15:375–382.
Henderson RG, Durando J, Oller AR, Merkel DJ, Marone PA, Bates HK. Acute oral toxicity of nickel compounds. Regul. Toxicol. Pharmacol. 2012;62:425–432. doi: 10.1016/j.yrtph.2012.02.002. PubMed DOI
Radev DD. Nickel-containing alloys for medical application obtained by methods of mechanochemistry and powder metallurgy. ISRN Metall. 2012;2012:1–6. doi: 10.5402/2012/464089. DOI
Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermat. 2019;81:227–241. doi: 10.1111/cod.13327. PubMed DOI
Keegan GM, Learmonth ID, Case CP. Orthopaedic metals and their potential toxicity in the arthroplasty patient. A review of current knowledge and future strategies. J. Bone Jt. Surg.—Ser Br. 2007;89:567–573. doi: 10.1302/0301-620X.89B5.18903. PubMed DOI
Nagaraja S, Sullivan SJL, Stafford PR, Lucas AD, Malkin E. Impact of nitinol stent surface processing on in-vivo nickel release and biological response. Acta Biomater. 2018;72:424–433. doi: 10.1016/J.ACTBIO.2018.03.036. PubMed DOI
Kanaji A, Orhue V, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, et al. Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro. J. Orthop. Surg. Res. 2014;9:1–8. doi: 10.1186/s13018-014-0091-6. PubMed DOI PMC
Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J. Biomed. Mater. Res. 1997;34:29–37. doi: 10.1002/(SICI)1097-4636(199701)34:1<29::AID-JBM5>3.0.CO;2-P. PubMed DOI
Jonitz-Heincke A, Sellin ML, Seyfarth A, Peters K, Mueller-Hilke B, Fiedler T, et al. Analysis of cellular activity and induction of inflammation in response to short-term exposure to cobalt and chromium ions in mature human osteoblasts. Materials (Basel) 2019;12:2771. doi: 10.3390/ma12172771. PubMed DOI PMC
Gartland A, Rumney RMH, Dillon JP, Gallagher JA. Isolation and culture of human osteoblasts. Methods Mol. Biol. 2012;806:337–355. doi: 10.1007/978-1-61779-367-7_22. PubMed DOI
Faltusová V, Vaculovič T, Holá M, Kanický V. Ilaps—Python software for data reduction and imaging with LA-ICP-MS. J. Anal. At. Spectrom. 2022;37:733–740. doi: 10.1039/d1ja00383f. DOI
Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ. Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J. Biomed. Mater. Res. 2002;60:420–433. doi: 10.1002/jbm.10106. PubMed DOI
D’Antò V, Valletta R, Amato M, Schweikl H, Simeone M, Paduano S, et al. Effect of nickel chloride on cell proliferation. Open Dent. J. 2012;6:177–181. doi: 10.2174/1874210601206010177. PubMed DOI PMC
Jang M, Kim SS, Lee J. Cancer cell metabolism: Implications for therapeutic targets. Exp. Mol. Med. 2013;45:45. doi: 10.1038/emm.2013.85. PubMed DOI PMC
Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 2017;3:45–51. doi: 10.1016/j.jons.2017.06.002. DOI
Fukushi A, Do KH, Chang YC, Kim CH. Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. Int. J. Mol. Sci. 2022;23:10037. doi: 10.3390/ijms231710037. PubMed DOI PMC
Válková L, Ševčíková J, PávkováGoldbergová M, Weiser A, Dlouhý A. Osteoarthritic process modifies expression response to NiTi alloy presence. J. Mater. Sci. Mater. Med. 2018 doi: 10.1007/s10856-018-6156-z. PubMed DOI
Štefančík M, Válková L, Veverková J, Balvan J, Vičar T, Babula P, et al. Ni and TiO2 nanoparticles cause adhesion and cytoskeletal changes in human osteoblasts. Environ. Sci. Pollut. Res. 2021;28:6018–6029. doi: 10.1007/s11356-020-10908-8. PubMed DOI
Hostýnek JJ, Reagan KE, Maibach HI. Release of nickel ion from the metal and its alloys as cause of nickel allergy. Nickel Ski. Absorption, Immunol. Epidemiol. Metall., CRC Press; 2002, p. 99–145. 10.1201/9780429285776-4.
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011;23:471–478. doi: 10.1097/BOR.0b013e328349c2b1. PubMed DOI PMC
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011;7:33–42. doi: 10.1038/nrrheum.2010.196. PubMed DOI
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–1707. doi: 10.1002/art.34453. PubMed DOI PMC
Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 2013;5:77–94. doi: 10.1177/1759720X12467868. PubMed DOI PMC
Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!) Osteoarthr. Cartil. 2013;21:16–21. doi: 10.1016/j.joca.2012.11.012. PubMed DOI
Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Med. Inflamm. 2020 doi: 10.1155/2020/8293921. PubMed DOI PMC
Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthr. Cartil. 2004;12:34–38. doi: 10.1016/j.joca.2003.09.013. PubMed DOI
Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr. Osteoporos. Rep. 2014;12:9–16. doi: 10.1007/s11914-013-0183-y. PubMed DOI PMC
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health. 2020;17:679. doi: 10.3390/ijerph17030679. PubMed DOI PMC
Varga I, Szebeni Á, Szoboszlai N, Kovács B. Determination of trace elements in human liver biopsy samples by ICP-MS and TXRF: Hepatic steatosis and nickel accumulation. Anal. Bioanal. Chem. 2005;383:476–482. doi: 10.1007/S00216-005-0010-0/FIGURES/4. PubMed DOI
Dudek-Adamska D, Lech T, Konopka T, Kościelniak P. Nickel content in human internal organs. Biol. Trace Elem. Res. 2021;199:2138–2144. doi: 10.1007/s12011-020-02347-w. PubMed DOI PMC
Das KK, Buchner V. Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health. 2007;22:157–173. doi: 10.1515/REVEH.2007.22.2.157. PubMed DOI
Pozebon D, Scheffler GL, Dressler VL, Nunes MAG. Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J. Anal. At. Spectrom. 2014;29:2204–2228. doi: 10.1039/c4ja00250d. DOI
Giesen C, Waentig L, Mairinger T, Drescher D, Kneipp J, Roos PH, et al. Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011;26:2160–2165. doi: 10.1039/c1ja10227c. DOI
Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem. 2012;84:9684–9688. doi: 10.1021/ac302639c. PubMed DOI
Managh AJ, Edwards SL, Bushell A, Wood KJ, Geissler EK, Hutchinson JA, et al. Single cell tracking of gadolinium labeled CD4+ T cells by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 2013;85:10627–10634. doi: 10.1021/ac4022715. PubMed DOI
Refsvik T, Andreassen T. Surface binding and uptake of nickel(II) in human epithelial kidney cells: Modulation by ionomycin, nicardipine and metals. Carcinogenesis. 1995;16:1107–1112. doi: 10.1093/carcin/16.5.1107. PubMed DOI
Edwards DL, Wataha JC, Hanks CT. Uptake and reversibility of uptake of nickel by human macrophages. J. Oral Rehabil. 1998;25:2–7. doi: 10.1046/j.1365-2842.1998.00197.x. PubMed DOI
Wataha JC, Hanks CT, Craig RG. Uptake of metal cations by fibroblasts in vitro. J. Biomed. Mater. Res. 1993;27:227–232. doi: 10.1002/jbm.820270212. PubMed DOI
Ke Q, Davidson T, Kluz T, Oller A, Costa M. Fluorescent tracking of nickel ions in human cultured cells. Toxicol. Appl. Pharmacol. 2007;219:18–23. doi: 10.1016/j.taap.2006.08.013. PubMed DOI
Veverkova J, Bartkova D, Weiser A, Dlouhy A, Babula P, Stepka P, et al. Effect of Ni ion release on the cells in contact with NiTi alloys. Environ. Sci. Pollut. Res. 2020;27:7934–7942. doi: 10.1007/s11356-019-07506-8. PubMed DOI
Campbell PM, Smith GD. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch. Biochem. Biophys. 1986;244:470–477. doi: 10.1016/0003-9861(86)90615-6. PubMed DOI
Eitinger T, Mandrand-Berthelot MA. Nickel transport systems in microorganisms. Arch. Microbiol. 2000;173:1–9. doi: 10.1007/s002030050001. PubMed DOI
Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: Theme and variations. BioMetals. 2005;18:399–405. doi: 10.1007/s10534-005-3714-x. PubMed DOI
Stoof J, Kuipers EJ, Klaver G, Van Vliet AHM. An ABC transporter and a TonB ortholog contribute to helicobacter mustelae nickel and cobalt acquisition. Infect. Immun. 2010;78:4261–4267. doi: 10.1128/IAI.00365-10/SUPPL_FILE/STOOF_IAI0365_10_R1_SUPPLEMENT.PDF. PubMed DOI PMC
Onodera R, Asakawa S, Segawa R, Mizuno N, Ogasawara K, Hiratsuka M, et al. Zinc ions have a potential to attenuate both Ni ion uptake and Ni ion-induced inflammation. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-21014-8. PubMed DOI PMC
Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J. Bone Jt. Surg.—Ser. A. 2001;83:428–436. doi: 10.2106/00004623-200103000-00017. PubMed DOI
Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE. Relating nickel-induced tissue inflammation to nickel release in vivo. J. Biomed. Mater. Res. 2001;58:537–544. doi: 10.1002/jbm.1052. PubMed DOI
Wataha JC, Hanks CT, Craig RG. The in vitro effects of metal cations on eukaryotic cell metabolism. J. Biomed. Mater. Res. 1991;25:1133–1149. doi: 10.1002/jbm.820250907. PubMed DOI
Wataha JC, Sun ZL, Hanks CT, Fang DN. Effect of Ni ions on expression of intercellular adhesion molecule 1 by endothelial cells. J. Biomed. Mater. Res. 1997;36:145–151. doi: 10.1002/(SICI)1097-4636(199708)36:2<145::AID-JBM2>3.0.CO;2-K. PubMed DOI
Viceconti M, Baleani M, Squarzoni S, Toni A. Fretting wear in a modular neck hip prosthesis. J. Biomed. Mater. Res. 1997;35:207–216. doi: 10.1002/(SICI)1097-4636(199705)35:2<207::AID-JBM9>3.0.CO;2-R. PubMed DOI
Dong H, Ju X, Yang H, Qian L, Zhou Z. Effect of ceramic conversion treatments on the surface damage and nickel ion release of NiTi alloys under fretting corrosion conditions. J. Mater. Sci. Mater. Med. 2008;19:937–946. doi: 10.1007/s10856-007-3222-3. PubMed DOI
Urban RM, Jacobs JJ, Gilbert JL, Galante JO. Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J. Bone Jt. Surg. 1994;76:1345–1359. doi: 10.2106/00004623-199409000-00009. PubMed DOI
Del Rio J, Beguiristain J, Duart J. Metal levels in corrosion of spinal implants. Eur. Spine J. 2007;16:1055–1061. doi: 10.1007/s00586-007-0311-4. PubMed DOI PMC