Ni and TiO2 nanoparticles cause adhesion and cytoskeletal changes in human osteoblasts
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1553/2018
Lékařská fakulta, Masarykova univerzita (CZ)
NU20-08-00149
Ministerstvo Zdravotnictví Ceské Republiky (CZ)
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministerstvo Školství, Mládeže a Tělovýchovy
MZE-RO0518
Ministerstvo Zemědělství (CZ)
PubMed
32981019
DOI
10.1007/s11356-020-10908-8
PII: 10.1007/s11356-020-10908-8
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesion, Bone, Cytoskeleton, Ni nanoparticles, Osteoblasts, TiO2 nanoparticles,
- MeSH
- buněčná adheze MeSH
- cytoskelet MeSH
- lidé MeSH
- nanočástice * MeSH
- osteoblasty MeSH
- titan * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.
Zobrazit více v PubMed
Ali A, Suhail M, Mathew S, Shah MA, Harakeh SM, Ahmad S, Kazmi Z, Rahman Alhamdan MA, Chaudhary A, Damanhouri GA, Qadri I (2016) Nanomaterial induced immune responses and cytotoxicity. J Nanosci Nanotechnol 16:40–57 DOI
Amanna EN, Bhat SS, Hegde SK (2019) An in vitro evaluation of nickel and chromium release from different commercially available stainless steel crowns. J Indian Soc Pedodontics Prev Dent 37:31–38. https://doi.org/10.4103/JISPPD.JISPPD_176_17 DOI
Azizi A, Jamilian A, Nucci F, Kamali Z, Hosseinikhoo N, Perillo L (2016) Release of metal ions from round and rectangular NiTi wires. Prog Orthod 17:10. https://doi.org/10.1186/s40510-016-0123-3 DOI
Bhardwaj G, Webster TJ (2017) Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int J Nanomedicine 12:363–369. https://doi.org/10.2147/IJN.S116105 DOI
Cabezas MD, Meckes B, Mirkin CA, Mrksich M (2019) Subcellular control over focal adhesion anisotropy, independent of cell morphology, dictates stem cell fate. ACS Nano 13:11144–11152. https://doi.org/10.1021/acsnano.9b03937 DOI
Cortijo J, Milara J, Mata M, Donet E, Gavara N, Peel SE, Hall IP, Morcillo EJ (2010) Nickel induces intracellular calcium mobilization and pathophysiological responses in human cultured airway epithelial cells. Chem Biol Interact 183:25–33. https://doi.org/10.1016/j.cbi.2009.09.011 DOI
Di Bucchianico S, Gliga AR, Åkerlund E et al (2018) Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part Fibre Toxicol 15:32. https://doi.org/10.1186/s12989-018-0268-y DOI
Downarowicz P, Mikulewicz M (2017) Trace metal ions release from fixed orthodontic appliances and DNA damage in oral mucosa cells by in vivo studies: a literature review. Adv Clin Exp Med 26:1155–1162. https://doi.org/10.17219/acem/65726 DOI
Ferguson ABJ, Akahoshi Y, Laing PG, Hodge ES (1962) Trace metal ion concentration in the liver, kidney, spleen, and lung of normal rabbits. JBJS 44:317–322 DOI
Ghalandari B, Asadollahi K, Shakerizadeh A, Komeili A, Riazi G, Kamrava SK, Attaran N (2019) Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J Photochem Photobiol B Biol 192:131–140. https://doi.org/10.1016/j.jphotobiol.2019.01.012 DOI
Gliga AR, Edoff K, Caputo F, Källman T, Blom H, Karlsson HL, Ghibelli L, Traversa E, Ceccatelli S, Fadeel B (2017) Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 7:9284. https://doi.org/10.1038/s41598-017-09430-8 DOI
Gornet MF, Singh V, Schranck FW, Skipor AK, Jacobs JJ (2017) Serum metal concentrations in patients with titanium ceramic composite cervical disc replacements. Spine 42:366–371. https://doi.org/10.1097/BRS.0000000000001745 DOI
Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini-Rev Med Chem. https://www.eurekaselect.com/140530/article . Accessed 20 Aug 2020
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B (2015) Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci 17. https://doi.org/10.3390/ijms17010010
Hahn A, Fuhlrott J, Loos A, Barcikowski S (2012) Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res 14:1–10. https://doi.org/10.1007/s11051-011-0686-3 DOI
He X-B, Ma T, Zheng W et al (2018) Nano-sized titanium alloy particles inhibit the proliferation and promote the apoptosis of bone marrow mesenchymal stem cells in vitro. Mol Med Rep 17:2271–2276. https://doi.org/10.3892/mmr.2017.8105 DOI
Høl PJ, Gjerdet NR, Jonung T (2019) Corrosion and metal release from overlapping arterial stents under mechanical and electrochemical stress – an experimental study. J Mech Behav Biomed Mater 93:31–35. https://doi.org/10.1016/j.jmbbm.2019.02.001 DOI
Hong F, Zhao X, Chen M, Zhou Y, Ze Y, Wang L, Wang Y, Ge Y, Zhang Q, Ye L (2016) TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J Biomed Mater Res A 104:124–135. https://doi.org/10.1002/jbm.a.35548 DOI
Huerta-García E, Ramos-Godinez MDP, López-Saavedra A et al (2019) Internalization of titanium dioxide nanoparticles is mediated by actin-dependent reorganization and clathrin- and dynamin-mediated endocytosis in H9c2 rat cardiomyoblasts. Chem Res Toxicol 32:578–588. https://doi.org/10.1021/acs.chemrestox.8b00284 DOI
Ibrahim M, Schoelermann J, Mustafa K, Cimpan MR (2018) TiO2 nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast-like cells in a size dependent manner. J Biomed Mater Res A 106:2582–2593. https://doi.org/10.1002/jbm.a.36448 DOI
Katoh K (2020) FAK-dependent cell motility and cell elongation. Cells 9:192. https://doi.org/10.3390/cells9010192 DOI
Kukia NR, Rasmi Y, Abbasi A et al (2018) Bio-effects of TiO2 nanoparticles on human colorectal cancer and umbilical vein endothelial cell lines. Asian Pac J Cancer Prev 19:2821–2829. https://doi.org/10.22034/APJCP.2018.19.10.2821 DOI
Lavigne P, Benderdour M, Lajeunesse D, Shi Q, Fernandes JC (2004) Expression of ICAM-1 by osteoblasts in healthy individuals and in patients suffering from osteoarthritis and osteoporosis. Bone 35:463–470. https://doi.org/10.1016/j.bone.2003.12.030 DOI
Li Z, Qiu J, Du LQ et al (2017) TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. Mater Sci Eng C 76:684–691. https://doi.org/10.1016/j.msec.2017.03.148 DOI
Li X, Zhong F (2014) Nickel induces interleukin-1β secretion via the NLRP3-ASC-caspase-1 pathway. Inflammation 37:457–466. https://doi.org/10.1007/s10753-013-9759-z DOI
Linden JV, Hopfer SM, Gossling HR, Sunderman FW (1985) Blood nickel concentrations in patients with stainless-steel hip prostheses. Ann Clin Lab Sci 15:459–464
Liu Z, Thompson GE (2015) Formation of porous anodic oxide film on titanium in phosphoric acid electrolyte. J Mater Eng Perform 24:59–66. https://doi.org/10.1007/s11665-014-1262-7 DOI
Liu C-M, Zheng G-H, Ming Q-L, Chao C, Sun JM (2013) Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway. J Agric Food Chem 61:1146–1154. https://doi.org/10.1021/jf304562b DOI
Mahaddalkar T, Mehta S, Cheriyamundath S, Muthurajan H, Lopus M (2017) Tryptone-stabilized gold nanoparticles target tubulin and inhibit cell viability by inducing an unusual form of cell cycle arrest. Exp Cell Res 360:163–170. https://doi.org/10.1016/j.yexcr.2017.09.002 DOI
Mazinanian N, Hedberg Y, Odnevall Wallinder I (2013) Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regul Toxicol Pharmacol 65:135–146. https://doi.org/10.1016/j.yrtph.2012.10.014 DOI
Mirhashemi A, Jahangiri S, Kharrazifard M (2018) Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes. Prog Orthod 19:4. https://doi.org/10.1186/s40510-018-0203-7 DOI
Peters K, Unger RE, Gatti AM, Sabbioni E, Tsaryk R, Kirkpatrick CJ (2007) Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int J Immunopathol Pharmacol 20:685–695. https://doi.org/10.1177/039463200702000404 DOI
Pettersson M, Kelk P, Belibasakis GN, Bylund D, Molin Thorén M, Johansson A (2017) Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res 52:21–32. https://doi.org/10.1111/jre.12364 DOI
Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, Hurt R, Kane AB (2011) Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124:138–148. https://doi.org/10.1093/toxsci/kfr206 DOI
Senna P, Del Bel Cury AA, Kates S, Meirelles L (2015) Surface damage on dental implants with release of loose particles after insertion into bone. Clin Implant Dent Relat Res 17:681–692. https://doi.org/10.1111/cid.12167 DOI
Ševčíková J, Bártková D, Goldbergová M, Kuběnová M, Čermák J, Frenzel J, Weiser A, Dlouhý A (2018) On the Ni-ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci 427:434–443. https://doi.org/10.1016/j.apsusc.2017.08.235 DOI
Su L, Deng Y, Zhang Y, Li C, Zhang R, Sun Y, Zhang K, Li J, Yao S (2011) Protective effects of grape seed procyanidin extract against nickel sulfate-induced apoptosis and oxidative stress in rat testes. Toxicol Mech Methods 21:487–494. https://doi.org/10.3109/15376516.2011.556156 DOI
Tanaka N, Ichinose S, Kimijima Y, Mimura M (2000) Investigation of titanium leak to bone tissue surrounding dental titanium implant: electron microscopic findings and analysis by electron diffraction. Med Electron Microsc 33:96–101. https://doi.org/10.1007/s007950000016 DOI
Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y (2000) Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res 15:1912–1923. https://doi.org/10.1359/jbmr.2000.15.10.1912 DOI
Tian H, Schryvers D, Shabalovskaya S, Humbeeck JV (2009) TEM study of the mechanism of Ni ion release from Nitinol wires with original oxides. In: European Symposium on Martensitic Transformations. EDP Sci 05027
Tsou T-C, Liou S-H, Yeh S-C, Tsai FY, Chao HR (2013) Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells. Toxicol Appl Pharmacol 273:492–499. https://doi.org/10.1016/j.taap.2013.09.014 DOI
Válková L, Ševčíková J, Pávková Goldbergová M, Weiser A, Dlouhý A (2018) Osteoarthritic process modifies expression response to NiTi alloy presence. J Mater Sci Mater Med 29:146. https://doi.org/10.1007/s10856-018-6156-z DOI
Vindin H, Bischof L, Gunning P, Stehn J (2014) Validation of an algorithm to quantify changes in actin cytoskeletal organization. J Biomol Screen 19:354–368. https://doi.org/10.1177/1087057113503494 DOI
Vranic S, Gosens I, Jacobsen NR, Jensen KA, Bokkers B, Kermanizadeh A, Stone V, Baeza-Squiban A, Cassee FR, Tran L, Boland S (2017) Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Arch Toxicol 91:353–363. https://doi.org/10.1007/s00204-016-1673-3 DOI
Wan R, Mo Y, Chien S, Li Y, Li Y, Tollerud DJ, Zhang Q (2011) The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles. Nanotoxicology 5:568–582. https://doi.org/10.3109/17435390.2010.537791 DOI
Wang B, Sun J-Y, Qian S, Liu XY, Zhang SL, Dong SJ, Zha GC (2013) Adhesion of osteoblast-like cell on silicon-doped TiO2 film prepared by cathodic arc deposition. Biotechnol Lett 35:975–982. https://doi.org/10.1007/s10529-013-1155-0 DOI
Winn B, Derrick Quarles CJ, Marcus RK, LaBerge M (2011) Nickel ions inhibit α-actin expression and decrease aspect ratio of rat vascular smooth muscle cellsin vitro. Metallomics 3:934–940. https://doi.org/10.1039/C1MT00035G DOI
Wu Y, Kong L (2020) Advance on toxicity of metal nickel nanoparticles. Environ Geochem Health 42:2277–2286. https://doi.org/10.1007/s10653-019-00491-4 DOI
Zarei MH, Shirazi SFH, Aghvami M et al (2018) Analysis of cytotoxic effects of nickel on human blood lymphocytes. Toxicol Mech Methods 28:79–86. https://doi.org/10.1080/15376516.2017.1364314 DOI
Zhang H, Yang S, Masako N, Lee DJ, Cooper LF, Ko CC (2015) Proliferation of preosteoblasts on TiO2 nanotubes is FAK/RhoA related. RSC Adv 5:38117–38124. https://doi.org/10.1039/C4RA16803H DOI
Zhao X, Toyooka T, Ibuki Y (2017) Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases. Toxicol Lett 276:39–47. https://doi.org/10.1016/j.toxlet.2017.05.009 DOI