miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27857164
PubMed Central
PMC5114684
DOI
10.1038/srep36625
PII: srep36625
Knihovny.cz E-zdroje
- MeSH
- HEK293 buňky MeSH
- internet * MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- počítačová simulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- MIRN145 microRNA, human MeSH Prohlížeč
MicroRNA (miRNA) sponges are RNA transcripts containing multiple high-affinity binding sites that associate with and sequester specific miRNAs to prevent them from interacting with their target messenger (m)RNAs. Due to the high specificity of miRNA sponges and strong inhibition of target miRNAs, these molecules have become increasingly applied in miRNA loss-of-function studies. However, improperly designed sponge constructs may sequester off-target miRNAs; thus, it has become increasingly important to develop a tool for miRNA sponge construct design and testing. In this study, we introduce microRNA sponge generator and tester (miRNAsong), a freely available web-based tool for generation and in silico testing of miRNA sponges. This tool generates miRNA sponge constructs for specific miRNAs and miRNA families/clusters and tests them for potential binding to miRNAs in selected organisms. Currently, miRNAsong allows for testing of sponge constructs in 219 species covering 35,828 miRNA sequences. Furthermore, we also provide an example, supplemented with experimental data, of how to use this tool. Using miRNAsong, we designed and tested a sponge for miR-145 inhibition, and cloned the sequence into an inducible lentiviral vector. We found that established cell lines expressing miR-145 sponge strongly inhibited miR-145, thus demonstrating the usability of miRNAsong tool for sponge generation. URL: http://www.med.muni.cz/histology/miRNAsong/.
Zobrazit více v PubMed
Barta T. et al.. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells Dayt. Ohio 34, 246–251 (2016). PubMed PMC
Dolezalova D. et al.. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells Dayt. Ohio 30, 1362–1372 (2012). PubMed
Wilfred B. R., Wang W.-X. & Nelson P. T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91, 209–217 (2007). PubMed PMC
Li C., Feng Y., Coukos G. & Zhang L. Therapeutic microRNA strategies in human cancer. AAPS J. 11, 747–757 (2009). PubMed PMC
Musilova K. & Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 29, 1004–1017 (2015). PubMed
Dyawanapelly S., Ghodke S. B., Vishwanathan R., Dandekar P. & Jain R. RNA interference-based therapeutics: molecular platforms for infectious diseases. J. Biomed. Nanotechnol. 10, 1998–2037 (2014). PubMed
Kaboli P. J., Rahmat A., Ismail P. & Ling K.-H. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol. Res. 97, 104–121 (2015). PubMed
Luck M. E., Muljo S. A. & Collins C. B. Prospects for Therapeutic Targeting of MicroRNAs in Human Immunological Diseases. J. Immunol. Baltim. Md 1950 194, 5047–5052 (2015). PubMed PMC
Monroig-Bosque P. del C., Rivera C. A. & Calin G. A. MicroRNAs in cancer therapeutics: ‘from the bench to the bedside’. Expert Opin. Biol. Ther. 15, 1381–1385 (2015). PubMed PMC
Ebert M. S. & Sharp P. A. MicroRNA sponges: Progress and possibilities. RNA 16, 2043–2050 (2010). PubMed PMC
Mukherji S. et al.. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854–859 (2011). PubMed PMC
Kluiver J. et al.. Generation of miRNA sponge constructs. Methods San Diego Calif 58, 113–117 (2012). PubMed
Ebert M. S., Neilson J. R. & Sharp P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007). PubMed PMC
Esau C. C. Inhibition of microRNA with antisense oligonucleotides. Methods San Diego Calif 44, 55–60 (2008). PubMed
Kluiver J. et al.. Rapid generation of microRNA sponges for microRNA inhibition. PloS One 7, e29275 (2012). PubMed PMC
Gentner B. et al.. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009). PubMed
Haraguchi T., Ozaki Y. & Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 37, e43 (2009). PubMed PMC
Athyros V. G., Katsiki N. & Karagiannis A. Is Targeting microRNAs the Philosopher’s Stone for Vascular Disease ? Curr. Vasc. Pharmacol. 14, 88–97 (2016). PubMed
Wang X.-W. et al.. MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. Int. J. Cardiol. 208, 79–86 (2016). PubMed
Zhuang C.-L. et al.. Synthetic miRNA sponges driven by mutant hTERT promoter selectively inhibit the progression of bladder cancer. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 36, 5157–5163 (2015). PubMed
Londin E. et al.. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl. Acad. Sci. USA 112, E1106–E1115 (2015). PubMed PMC
Gaillet B. et al.. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol. Bioeng. 106, 203–215 (2010). PubMed
Mullick A. et al.. The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol. 6, 43 (2006). PubMed PMC
Griffiths-Jones S., Saini H. K., Dongen S. van & Enright A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008). PubMed PMC
Griffiths-Jones S., Grocock R. J., Dongen S. van, Bateman A. & Enright A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006). PubMed PMC
Griffiths‐Jones S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004). PubMed PMC
Kozomara A. & Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011). PubMed PMC
SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998). PubMed PMC
Rehmsmeier M., Steffen P., Höchsmann M. & Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004). PubMed PMC
Krüger J. & Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454 (2006). PubMed PMC
Sachdeva M. et al.. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. USA 106, 3207–3212 (2009). PubMed PMC
Shao Y., Qu Y., Dang S., Yao B. & Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 13, 51 (2013). PubMed PMC
Xu N., Papagiannakopoulos T., Pan G., Thomson J. A. & Kosik K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009). PubMed
Zhang W., Wang Q., Yu M., Wu N. & Wang H. MicroRNA-145 function as a cell growth repressor by directly targeting c-Myc in human ovarian cancer. Technol. Cancer Res. Treat. 13, 161–168 (2014). PubMed
Janssen H. L. A. et al.. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013). PubMed
Kertesz M., Iovino N., Unnerstall U., Gaul U. & Segal E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007). PubMed
Hofacker I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003). PubMed PMC
Liu C. et al.. CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res. 41, e138 (2013). PubMed PMC
Wang P. et al.. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. Database J. Biol. Databases Curation 2015 (2015). PubMed PMC
Seok H., Ham J., Jang E.-S. & Chi S. W. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Mol. Cells 39, 375–381 (2016). PubMed PMC
Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009). PubMed PMC
Morgado A. L., Rodrigues C. M. P. & Solá S. MicroRNA-145 Regulates Neural Stem Cell Differentiation Through the Sox2-Lin28/let-7 Signaling Pathway. Stem Cells Dayt. Ohio 34, 1386–1395 (2016). PubMed
Adammek M. et al.. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil. Steril. 99, 1346–1355.e5 (2013). PubMed
Huang S. et al.. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol. Rep. 28, 1831–1837 (2012). PubMed
Otaegi G., Pollock A. & Sun T. An Optimized Sponge for microRNA miR-9 Affects Spinal Motor Neuron Development in vivo. Front. Neurosci. 5, 146 (2011). PubMed PMC
Hollensen A. K., Bak R. O., Haslund D. & Mikkelsen J. G. Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors. RNA Biol. 10, 406–414 (2013). PubMed PMC
Scherr M. et al.. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res. 35, e149 (2007). PubMed PMC
Choi W.-Y., Giraldez A. J. & Schier A. F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007). PubMed
Bak R. O., Hollensen A. K., Primo M. N., Sørensen C. D. & Mikkelsen J. G. Potent microRNA suppression by RNA Pol II-transcribed ‘Tough Decoy’ inhibitors. RNA N. Y. N 19, 280–293 (2013). PubMed PMC
An Y., Wu W. & Lv A. A PCR-after-ligation method for cloning of multiple DNA inserts. Anal. Biochem. 402, 203–205 (2010). PubMed
Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling