Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts

. 2019 Oct 31 ; 9 (1) : 15759. [epub] 20191031

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31673026
Odkazy

PubMed 31673026
PubMed Central PMC6823439
DOI 10.1038/s41598-019-52294-3
PII: 10.1038/s41598-019-52294-3
Knihovny.cz E-zdroje

Oct4-mediated reprogramming has recently become a novel tool for the generation of various cell types from differentiated somatic cells. Although molecular mechanisms underlying this process are unknown, it is well documented that cells over-expressing Oct4 undergo transition from differentiated state into plastic state. This transition is associated with the acquisition of stem cells properties leading to epigenetically "open" state that is permissive to cell fate switch upon external stimuli. In order to contribute to our understanding of molecular mechanisms driving this process, we characterised human fibroblasts over-expressing Oct4 and performed comprehensive small-RNAseq analysis. Our analyses revealed new interesting aspects of Oct4-mediated cell plasticity induction. Cells over-expressing Oct4 lose their cell identity demonstrated by down-regulation of fibroblast-specific genes and up-regulation of epithelial genes. Interestingly, this process is associated with microRNA expression profile that is similar to microRNA profiles typically found in pluripotent stem cells. We also provide extensive network of microRNA families and clusters allowing us to precisely determine the miRNAome associated with the acquisition of Oct4-induced transient plastic state. Our data expands current knowledge of microRNA and their implications in cell fate alterations and contributing to understanding molecular mechanisms underlying it.

Zobrazit více v PubMed

Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. PubMed

Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell. 2011;9:504–516. doi: 10.1016/j.stem.2011.11.012. PubMed DOI

Mitchell RR, et al. Activation of Neural Cell Fate Programs Toward Direct Conversion of Adult Human Fibroblasts into Tri-Potent Neural Progenitors Using OCT-4. Stem Cells Dev. 2014;23:1937–1946. doi: 10.1089/scd.2014.0023. PubMed DOI PMC

Mitchell R, et al. Molecular Evidence for OCT4-Induced Plasticity in Adult Human Fibroblasts Required for Direct Cell Fate Conversion to Lineage Specific Progenitors. STEM CELLS. 2014;32:2178–2187. doi: 10.1002/stem.1721. PubMed DOI

Szabo E, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010;468:521–526. doi: 10.1038/nature09591. PubMed DOI

Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning Adv. Appl. 2014;7:19–29. PubMed PMC

Bar-Nur O, et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat. Biotechnol. 2015;33:761–768. doi: 10.1038/nbt.3247. PubMed DOI PMC

Maza I, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 2015;33:769–774. doi: 10.1038/nbt.3270. PubMed DOI PMC

Margariti A, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc. Natl. Acad. Sci. 2012;109:13793–13798. doi: 10.1073/pnas.1205526109. PubMed DOI PMC

Prasad A, et al. A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regen. Med. 2016;11:181–191. doi: 10.2217/rme.16.5. PubMed DOI

Karamariti E, et al. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ. Res. 2013;112:1433–1443. doi: 10.1161/CIRCRESAHA.111.300415. PubMed DOI

Doffou M, et al. Oct4 Is Crucial for Transdifferentiation of Hepatocytes to Biliary Epithelial Cells in an In Vitro Organoid Culture Model. Gene Expr. 2018;18:51–62. doi: 10.3727/105221617X15124876321401. PubMed DOI PMC

Kim J, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Natl. Acad. Sci. 2011;108:7838–7843. doi: 10.1073/pnas.1103113108. PubMed DOI PMC

Efe JA, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 2011;13:215–222. doi: 10.1038/ncb2164. PubMed DOI

Li X, et al. Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4. Int. J. Biol. Sci. 2016;12:53–62. doi: 10.7150/ijbs.12199. PubMed DOI PMC

Radzisheuskaya A, Silva JCR. Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends Cell Biol. 2014;24:275–284. doi: 10.1016/j.tcb.2013.11.010. PubMed DOI PMC

Salci KR, et al. Acquisition of pluripotency through continued environmental influence on OCT4-induced plastic human fibroblasts. Stem Cell Res. 2015;15:221–230. doi: 10.1016/j.scr.2015.06.006. PubMed DOI

Zhu S, et al. Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds. Cell Stem Cell. 2010;7:651–655. doi: 10.1016/j.stem.2010.11.015. PubMed DOI PMC

Wang Y, et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep. 2011;12:373–378. doi: 10.1038/embor.2011.11. PubMed DOI PMC

Moradi, S., Asgari, S. & Baharvand, H. Concise Review: Harmonies Played by MicroRNAs in Cell Fate Reprogramming. STEM CELLS32, 3–15 (2014). PubMed

Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011;12:99–110. doi: 10.1038/nrg2936. PubMed DOI

Onder TT, Daley GQ. microRNAs become macro players in somatic cell reprogramming. Genome Med. 2011;3:40. doi: 10.1186/gm256. PubMed DOI PMC

Parchem RJ, et al. Two miRNA clusters reveal alternative paths in late-stage reprogramming. Cell Stem Cell. 2014;14:617–631. doi: 10.1016/j.stem.2014.01.021. PubMed DOI PMC

Barta T, et al. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells Dayt. Ohio. 2016;34:246–251. doi: 10.1002/stem.2220. PubMed DOI PMC

Ying S-Y, Fang W, Lin S-L. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms. Methods Mol. Biol. Clifton NJ. 2018;1733:283–304. doi: 10.1007/978-1-4939-7601-0_23. PubMed DOI

Lin S-L, et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA N. Y. N. 2008;14:2115–2124. doi: 10.1261/rna.1162708. PubMed DOI PMC

Lin S-L, et al. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 2011;39:1054–1065. doi: 10.1093/nar/gkq850. PubMed DOI PMC

Miyoshi N, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8:633–638. doi: 10.1016/j.stem.2011.05.001. PubMed DOI

Unternaehrer JJ, et al. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep. 2014;3:691–698. doi: 10.1016/j.stemcr.2014.09.008. PubMed DOI PMC

Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC

Dolezalova D, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells Dayt. Ohio. 2012;30:1362–1372. doi: 10.1002/stem.1108. PubMed DOI

Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev. Cell. 2003;5:351–358. doi: 10.1016/S1534-5807(03)00227-2. PubMed DOI

Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinforma. Oxf. Engl. 2017;33:1554–1560. PubMed PMC

Ghasemi-Kasman M, Zare L, Baharvand H, Javan M. In vivo conversion of astrocytes to myelinating cells by miR-302/367 and valproate to enhance myelin repair. J. Tissue Eng. Regen. Med. 2018;12:e462–e472. doi: 10.1002/term.2276. PubMed DOI

Martins‐Taylor K, Xu R-H. Concise Review: Genomic Stability of Human Induced Pluripotent Stem Cells. Stem Cells. 2012;30:22–27. doi: 10.1002/stem.705. PubMed DOI

Neofytou E, O’Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J. Clin. Invest. 2015;125:2551–2557. doi: 10.1172/JCI80575. PubMed DOI PMC

Li R, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7:51–63. doi: 10.1016/j.stem.2010.04.014. PubMed DOI

Samavarchi-Tehrani P, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7:64–77. doi: 10.1016/j.stem.2010.04.015. PubMed DOI

Card DAG, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol. 2008;28:6426–6438. doi: 10.1128/MCB.00359-08. PubMed DOI PMC

Anokye-Danso F, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8:376–388. doi: 10.1016/j.stem.2011.03.001. PubMed DOI PMC

Hu S, et al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells Dayt. Ohio. 2013;31:259–268. doi: 10.1002/stem.1278. PubMed DOI PMC

Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res. 2015;43:7173–7188. doi: 10.1093/nar/gkv703. PubMed DOI PMC

Polo JM, et al. A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell. 2012;151:1617–1632. doi: 10.1016/j.cell.2012.11.039. PubMed DOI PMC

Barger, C. J., Branick, C., Chee, L. & Karpf, A. R. Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers11 (2019). PubMed PMC

Barta T, Peskova L, Hampl A. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci. Rep. 2016;6:36625. doi: 10.1038/srep36625. PubMed DOI PMC

Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. PubMed DOI

Hotta A, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods. 2009;6:370–376. doi: 10.1038/nmeth.1325. PubMed DOI

Cerna Katerina, Oppelt Jan, Chochola Vaclav, Musilova Katerina, Seda Vaclav, Pavlasova Gabriela, Radova Lenka, Arigoni Maddalena, Calogero Raffaele A., Benes Vladimir, Trbusek Martin, Brychtova Yvona, Doubek Michael, Mayer Jiri, Pospisilova Sarka, Mraz Marek. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia. 2018;33(2):403–414. doi: 10.1038/s41375-018-0230-x. PubMed DOI

Babraham Bioinformatics. Available at: http://www.bioinformatics.babraham.ac.uk/index.html (Accessed: 22nd August 2018).

Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods San Diego Calif. 2013;63:41–49. doi: 10.1016/j.ymeth.2013.06.027. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

FASTX-Toolkit. Available at: http://hannonlab.cshl.edu/fastx_toolkit/index.html (Accessed: 22nd August 2018).

Babraham Bioinformatics - FastQ Screen. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/ (Accessed: 22nd August 2018).

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Speir ML, et al. The UCSC Genome Browser database: 2016 update. Nucleic Acids Res. 2016;44:D717–725. doi: 10.1093/nar/gkv1275. PubMed DOI PMC

Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinforma. Oxf. Engl. 2015;31:3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC

R: The R Project for Statistical Computing. Available at: https://www.r-project.org/ (Accessed: 22nd August 2018).

Huber W, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).

Kolde, R. pheatmap: Pretty Heatmaps (2018).

Neuwirth, E. RColorBrewer: ColorBrewer Palettes (2014).

Sievert, C. et al. plotly: Create Interactive Web Graphics via ‘plotly.js’ (2018).

mirbase.db. Bioconductor Available at: http://bioconductor.org/packages/mirbase.db/ (Accessed: 22nd August 2018).

Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics. 2013;14:244. doi: 10.1186/1471-2105-14-244. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...