Illuminating the mechanism and allosteric behavior of NanoLuc luciferase

. 2023 Nov 29 ; 14 (1) : 7864. [epub] 20231129

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38030625
Odkazy

PubMed 38030625
PubMed Central PMC10687086
DOI 10.1038/s41467-023-43403-y
PII: 10.1038/s41467-023-43403-y
Knihovny.cz E-zdroje

NanoLuc, a superior β-barrel fold luciferase, was engineered 10 years ago but the nature of its catalysis remains puzzling. Here experimental and computational techniques are combined, revealing that imidazopyrazinone luciferins bind to an intra-barrel catalytic site but also to an allosteric site shaped on the enzyme surface. Structurally, binding to the allosteric site prevents simultaneous binding to the catalytic site, and vice versa, through concerted conformational changes. We demonstrate that restructuration of the allosteric site can boost the luminescent reaction in the remote active site. Mechanistically, an intra-barrel arginine coordinates the imidazopyrazinone component of luciferin, which reacts with O2 via a radical charge-transfer mechanism, and then it also protonates the resulting excited amide product to form a light-emitting neutral species. Concomitantly, an aspartate, supported by two tyrosines, fine-tunes the blue color emitter to secure a high emission intensity. This information is critical to engineering the next-generation of ultrasensitive bioluminescent reporters.

Zobrazit více v PubMed

Haddock SHD, Moline MA, Case JF. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2010;2:443–493. doi: 10.1146/annurev-marine-120308-081028. PubMed DOI

Mitiouchkina T, et al. Plants with genetically encoded autoluminescence. Nat. Biotechnol. 2020;38:944–946. doi: 10.1038/s41587-020-0500-9. PubMed DOI PMC

Schenkmayerova A, et al. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 2021;12:3616. doi: 10.1038/s41467-021-23450-z. PubMed DOI PMC

Su Y, et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat. Methods. 2020;17:852–860. doi: 10.1038/s41592-020-0889-6. PubMed DOI PMC

Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 2021;50:5668–5705. doi: 10.1039/D0CS01492C. PubMed DOI

Shimomura O, Masugi T, Johnson FH, Haneda Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry. 1978;17:994–998. doi: 10.1021/bi00599a008. PubMed DOI

Inouye S, Watanabe K, Nakamura H, Shimomura O. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 2000;481:19–25. doi: 10.1016/S0014-5793(00)01963-3. PubMed DOI

Hall MP, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 2012;7:1848–1857. doi: 10.1021/cb3002478. PubMed DOI PMC

Guo Z, et al. Engineering and exploiting synthetic allostery of NanoLuc luciferase. Nat. Commun. 2022;13:789. doi: 10.1038/s41467-022-28425-2. PubMed DOI PMC

England CG, Ehlerding EB, Cai W. NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem. 2016;27:1175–1187. doi: 10.1021/acs.bioconjchem.6b00112. PubMed DOI PMC

Biewenga L, Rosier BJHM, Merkx M. Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc. Trans. 2020;48:2643–2655. doi: 10.1042/BST20200440. PubMed DOI

Dixon AS, et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 2016;11:400–408. doi: 10.1021/acschembio.5b00753. PubMed DOI

Yeh H-W, et al. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat. Methods. 2017;14:971–974. doi: 10.1038/nmeth.4400. PubMed DOI PMC

Yeh H-W, et al. ATP-independent bioluminescent reporter variants to improve in vivo imaging. ACS Chem. Biol. 2019;14:959–965. doi: 10.1021/acschembio.9b00150. PubMed DOI PMC

Nagai, T. & Hattori, M. Tiny but bright. Nat. Rev. Chem.10.1038/s41570-022-00413-6 (2022). PubMed

Shipunova VO, Shilova ON, Shramova EI, Deyev SM, Proshkina GM. A highly specific substrate for NanoLUC luciferase furimazine is toxic in vitro and in vivo. Russ. J. Bioorg. Chem. 2018;44:225–228. doi: 10.1134/S1068162018020085. DOI

Tomabechi Y, et al. Crystal structure of nanoKAZ: The mutated 19 kDa component of Oplophorus luciferase catalyzing the bioluminescent reaction with coelenterazine. Biochem. Biophys. Res. Commun. 2016;470:88–93. doi: 10.1016/j.bbrc.2015.12.123. PubMed DOI

Altamash T, Ahmed W, Rasool S, Biswas KH. Intracellular ionic strength sensing using NanoLuc. Int J. Mol. Sci. 2021;22:677. doi: 10.3390/ijms22020677. PubMed DOI PMC

Inouye S, et al. Reverse mutants of the catalytic 19 kDa mutant protein (nanoKAZ/nanoLuc) from Oplophorus luciferase with coelenterazine as preferred substrate. PLoS One. 2022;17:e0272992. doi: 10.1371/journal.pone.0272992. PubMed DOI PMC

Berman HM, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Schenkmayerova, A. et al. Catalytic mechanism for Renilla-type luciferases. Nat. Catal.6, 23–38 (2023).

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI

Loening AM, Wu AM, Gambhir SS. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat. Methods. 2007;4:641–643. doi: 10.1038/nmeth1070. PubMed DOI

Cao S, et al. Defining molecular glues with a dual-nanobody cannabidiol sensor. Nat. Commun. 2022;13:815. doi: 10.1038/s41467-022-28507-1. PubMed DOI PMC

Schreiber SL. The rise of molecular glues. Cell. 2021;184:3–9. doi: 10.1016/j.cell.2020.12.020. PubMed DOI

Elledge SK, et al. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat. Biotechnol. 2021;39:928–935. doi: 10.1038/s41587-021-00878-8. PubMed DOI PMC

Azad T, et al. Luciferase-based biosensors in the era of the COVID-19 pandemic. ACS Nanosci. Au. 2021;1:15–37. doi: 10.1021/acsnanoscienceau.1c00009. PubMed DOI PMC

Mathieu C, et al. A bioluminescent 3CLPro activity assay to monitor SARS-CoV-2 replication and identify inhibitors. Viruses. 2021;13:1814. doi: 10.3390/v13091814. PubMed DOI PMC

Zanotti G, Scapin G, Spadon P, Veerkamp JH, Sacchettini JC. Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J. Biol. Chem. 1992;267:18541–18550. doi: 10.1016/S0021-9258(19)36996-0. PubMed DOI

Young AC, et al. Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure. 1994;2:523–534. doi: 10.1016/S0969-2126(00)00052-6. PubMed DOI

Matsuoka S, et al. Water-mediated recognition of simple alkyl chains by heart-type fatty-acid-binding protein. Angew. Chem. Int. Ed. Engl. 2015;54:1508–1511. doi: 10.1002/anie.201409830. PubMed DOI PMC

Madni ZK, Tripathi SK, Salunke DM. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. Plant J. 2020;102:340–352. doi: 10.1111/tpj.14627. PubMed DOI

Madni, Z. K., Kumar, A., Kumar, U., Jaiswal, D. & Salunke, D. M. Dynamics of lipid displacement inside the hydrophobic cavity of a nonspecific lipid transfer protein from Solanum melongena. J. Biomol. Struct. Dyn.10.1080/07391102.2022.2097956 (2022). PubMed

Titushin MS, et al. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem. Photobio. Sci. 2008;7:189–196. doi: 10.1039/b713109g. PubMed DOI

Titushin MS, Feng Y, Lee J, Vysotski ES, Liu Z-J. Protein-protein complexation in bioluminescence. Protein Cell. 2011;2:957–972. doi: 10.1007/s13238-011-1118-y. PubMed DOI PMC

Liu Z-J, et al. Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proc. Natl Acad. Sci. USA. 2006;103:2570–2575. doi: 10.1073/pnas.0511142103. PubMed DOI PMC

Imai Y, et al. Fluorescence properties of phenolate anions of coelenteramide analogues: the light-emitter structure in aequorin bioluminescence. J. Photochem. Photobiol. A: Chem. 2001;146:95–107. doi: 10.1016/S1010-6030(01)00554-8. DOI

Li Z-S, Zhao X, Zou L-Y, Ren A-M. The dynamics simulation and quantum calculation investigation about luminescence mechanism of coelenteramide. Photochem. Photobio. 2013;89:849–855. doi: 10.1111/php.12073. PubMed DOI

Coutant EP, et al. Gram-scale synthesis of luciferins derived from coelenterazine and original insights into their bioluminescence properties. Org. Biomol. Chem. 2019;17:3709–3713. doi: 10.1039/C9OB00459A. PubMed DOI

Sarkar G, Sommer SS. The ‘megaprimer’ method of site-directed mutagenesis. Biotechniques. 1990;8:404–407. PubMed

Kabsch W. XDS. Acta Crystallogr D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D. Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC

McCoy AJ, et al. Phaser crystallographic software. J. Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC

Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D. Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Svergun D, Barberato C, Koch MHJ. CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl Crystallogr. 1995;28:768–773. doi: 10.1107/S0021889895007047. DOI

Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl Crystallogr. 2009;42:342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC

Johnson KA, Simpson ZB, Blom T. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009;387:20–29. doi: 10.1016/j.ab.2008.12.024. PubMed DOI

Johnson KA, Simpson ZB, Blom T. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal. Biochem. 2009;387:30–41. doi: 10.1016/j.ab.2008.12.025. PubMed DOI

Peskova, L. et al. miR-183/96/182 cluster is an important morphogenetic factor targeting PAX6 expression in differentiating human retinal organoids. Stem Cells10.1002/stem.3272 (2020). PubMed

Peskova L, Cerna K, Oppelt J, Mraz M, Barta T. Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci. Rep. 2019;9:15759. doi: 10.1038/s41598-019-52294-3. PubMed DOI PMC

Weissová K, et al. LuminoCell: a versatile and affordable platform for real-time monitoring of luciferase-based reporters. Life Sci. Alliance. 2022;5:e202201421. doi: 10.26508/lsa.202201421. PubMed DOI PMC

Hanwell MD, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Vanquelef E, et al. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011;39:W511–W517. doi: 10.1093/nar/gkr288. PubMed DOI PMC

Sanner MF. Python: a programming language for software integration and development. J. Mol. Graph Model. 1999;17:57–61. PubMed

Sanner MF, Olson AJ, Spehner JC. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996;38:305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y. PubMed DOI

Burley SK, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49:D437–D451. doi: 10.1093/nar/gkaa1038. PubMed DOI PMC

PyMOL. PyMOL Molecular Graphics System v. 2.0 (Schrödinger LLC).

Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537–W541. doi: 10.1093/nar/gks375. PubMed DOI PMC

Gordon JC, et al. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005;33:W368–W371. doi: 10.1093/nar/gki464. PubMed DOI PMC

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Sumbalova L, Stourac J, Martinek T, Bednar D, Damborsky J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–W362. doi: 10.1093/nar/gky417. PubMed DOI PMC

Case, D. A. et al. AMBER 2016, University of California, San Francisco (2016).

Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins. 2008;73:765–783. doi: 10.1002/prot.22102. PubMed DOI

Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M. Comparison of simple potential functions for simulating. Liq. Water J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Maier JA, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Feenstra KA, Hess B, Berendsen HJC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI

Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Naritomi Y, Fuchigami S. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis. J. Chem. Phys. 2013;139:215102. doi: 10.1063/1.4834695. PubMed DOI

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Case, D. A. et al. AMBER 2016 (University of California, San Francisco, 2016).

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Götz AW, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012;8:1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC

Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013;9:3878–3888. doi: 10.1021/ct400314y. PubMed DOI

Le Grand S, Götz AW, Walker RC. SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Computat. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Ozer G, Quirk S, Hernandez R. Adaptive steered molecular dynamics: validation of the selection criterion and benchmarking energetics in vacuum. J. Chem. Phys. 2012;136:215104. doi: 10.1063/1.4725183. PubMed DOI

Kayikci M, et al. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 2018;25:185–194. doi: 10.1038/s41594-017-0019-z. PubMed DOI PMC

Stourac J, et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019;47:W414–W422. doi: 10.1093/nar/gkz378. PubMed DOI PMC

Zobrazit více v PubMed

PDB
8AQH, 8AQI, 8AQ6, 8BO9, 7MJB, 7VSX, 5B0U, 7SNT

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...