Engineering the protein dynamics of an ancestral luciferase

. 2021 Jun 14 ; 12 (1) : 3616. [epub] 20210614

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34127663

Grantová podpora
BB/L002469/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 34127663
PubMed Central PMC8203615
DOI 10.1038/s41467-021-23450-z
PII: 10.1038/s41467-021-23450-z
Knihovny.cz E-zdroje

Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.

Zobrazit více v PubMed

Baier F, Copp JN, Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence–function relationships. Biochemistry. 2016;55:6375–6388. doi: 10.1021/acs.biochem.6b00723. PubMed DOI

Tyzack JD, Furnham N, Sillitoe I, Orengo CM, Thornton JM. Understanding enzyme function evolution from a computational perspective. Curr. Opin. Struct. Biol. 2017;47:131–139. doi: 10.1016/j.sbi.2017.08.003. PubMed DOI

Arnold FH. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. Engl. 2018;57:4143–4148. doi: 10.1002/anie.201708408. PubMed DOI PMC

Tóth-Petróczy Á, Tawfik DS. Protein insertions and deletions enabled by neutral roaming in sequence space. Mol. Biol. Evol. 2013;30:761–771. doi: 10.1093/molbev/mst003. PubMed DOI

Hochberg GKA, Thornton JW. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 2017;46:247–269. doi: 10.1146/annurev-biophys-070816-033631. PubMed DOI PMC

Thornton JW. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 2004;5:366–375. doi: 10.1038/nrg1324. PubMed DOI

Harms MJ, Thornton JW. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 2013;14:559–571. doi: 10.1038/nrg3540. PubMed DOI PMC

Zou T, Risso VA, Gavira JA, Sanchez-Ruiz JM, Ozkan SB. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol. Biol. Evol. 2014;32:132–143. doi: 10.1093/molbev/msu281. PubMed DOI

Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J. Am. Chem. Soc. 2013;135:2899–2902. doi: 10.1021/ja311630a. PubMed DOI

Chothia C, Gough J, Vogel C, Teichmann SA. Evolution of the protein repertoire. Science. 2003;300:1701. doi: 10.1126/science.1085371. PubMed DOI

Pascarella S, Argos P. Analysis of insertions/deletions in protein structures. J. Mol. Biol. 1992;224:461–471. doi: 10.1016/0022-2836(92)91008-D. PubMed DOI

Emond S, et al. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17061-3. PubMed DOI PMC

Skamaki K, et al. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc. Natl Acad. Sci. USA. 2020;117:27307–27318. doi: 10.1073/pnas.2002954117. PubMed DOI PMC

Chaloupkova R, et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019;9:4810–4823. doi: 10.1021/acscatal.9b01031. DOI

Koudelakova T, et al. Haloalkane dehalogenases: biotechnological applications. Biotechnol. J. 2013;8:32–45. doi: 10.1002/biot.201100486. PubMed DOI

Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA. 1991;88:4438–4442. doi: 10.1073/pnas.88.10.4438. PubMed DOI PMC

Loening AM, Fenn TD, Gambhir SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 2007;374:1017–1028. doi: 10.1016/j.jmb.2007.09.078. PubMed DOI PMC

Woo J, Howell MH, Arnim AGvon. Gvon Structure–function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 2008;17:725–735. doi: 10.1110/ps.073355508. PubMed DOI PMC

Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA. 2006;103:5869. doi: 10.1073/pnas.0510098103. PubMed DOI PMC

Loening AM, Fenn TD, Wu AM, Gambhir SS. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 2006;19:391–400. doi: 10.1093/protein/gzl023. PubMed DOI

Bradshaw RT, et al. Neurotransmitter transporter conformational dynamics using HDX-MS and molecular dynamics simulation. Biophys. J. 2018;114:207a. doi: 10.1016/j.bpj.2017.11.1161. DOI

Yeh H-W, Ai H-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. Palo Alto Calif. 2019;12:129–150. doi: 10.1146/annurev-anchem-061318-115027. PubMed DOI PMC

Chovancova E, et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Kipnis Y, Dellus-Gur E, Tawfik DS. TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng. Des. Sel. 2012;25:437–444. doi: 10.1093/protein/gzs023. PubMed DOI

Jones DD. Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 β-lactamase to an amino acid deletion. Nucleic Acids Res. 2005;33:e80–e80. doi: 10.1093/nar/gni077. PubMed DOI PMC

Fujii, R., Kitaoka, M. & Hayashi, K. in Directed Evolution Library Creation: Methods and Protocols (eds. Gillam, E. M. J., Copp, J. N. & Ackerley, D.) 151–158 (Springer, 2014).

Jones, D. D., Arpino, J. A. J., Baldwin, A. J. & Edmundson, M. C. in Directed Evolution Library Creation: Methods and Protocols (eds Gillam, E. M. J., Copp, J. N. & Ackerley, D.) 159–172 (Springer, 2014).

Obexer R, et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 2017;9:50–56. doi: 10.1038/nchem.2596. PubMed DOI

Khare SD, et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 2012;8:294. doi: 10.1038/nchembio.777. PubMed DOI PMC

Rockah-Shmuel L, Tawfik DS. Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage. Nucleic Acids Res. 2012;40:11627–11637. doi: 10.1093/nar/gks944. PubMed DOI PMC

Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 2020;59:13204–13231. doi: 10.1002/anie.201901491. PubMed DOI

Mazurenko S, Prokop Z, Damborsky J. Machine learning in enzyme engineering. ACS Catal. 2020;10:1210–1223. doi: 10.1021/acscatal.9b04321. DOI

Lourenço JM, Esteves da Silva JCG, Pinto da Silva L. Combined experimental and theoretical study of Coelenterazine chemiluminescence in aqueous solution. J. Lumin. 2018;194:139–145. doi: 10.1016/j.jlumin.2017.10.025. DOI

Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Comparative study of the chemiluminescence of coelenterazine, coelenterazine-e and Cypridina luciferin with an experimental and theoretical approach. J. Photochem. Photobiol. B. 2019;190:21–31. doi: 10.1016/j.jphotobiol.2018.11.006. PubMed DOI

Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324:203–207. doi: 10.1126/science.1169375. PubMed DOI

Kreß N, Halder JM, Rapp LR, Hauer B. Unlocked potential of dynamic elements in protein structures: channels and loops. Energy Mech. Biol. 2018;47:109–116. PubMed

Nestl BM, Hauer B. Engineering of flexible loops in enzymes. ACS Catal. 2014;4:3201–3211. doi: 10.1021/cs500325p. DOI

Park H-S, et al. Design and evolution of new catalytic activity with an existing protein scaffold. Science. 2006;311:535–538. doi: 10.1126/science.1118953. PubMed DOI

Afriat-Jurnou L, Jackson CJ, Tawfik DS. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry. 2012;51:6047–6055. doi: 10.1021/bi300694t. PubMed DOI

Bornscheuer UT, et al. Engineering the third wave of biocatalysis. Nature. 2012;485:185–194. doi: 10.1038/nature11117. PubMed DOI

Romero PA, Arnold FH. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 2009;10:866–876. doi: 10.1038/nrm2805. PubMed DOI PMC

Emond, S. & Hollfelder, F. TRIAD: a transposition-based approach for gene mutagenesis by random short in-frame insertions and deletions for directed protein evolution. Protoc. Exch.10.21203/rs.3.pex-1448/v1 (2021).

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC

Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI

Holloway P, Trevors JT, Lee H. A colorimetric assay for detecting haloalkane dehalogenase activity. J. Microbiol. Methods. 1998;32:31–36. doi: 10.1016/S0167-7012(98)00008-6. DOI

Buryska T, et al. Controlled oil/water partitioning of hydrophobic substrates extending the bioanalytical applications of droplet-based microfluidics. Anal. Chem. 2019;91:10008–10015. doi: 10.1021/acs.analchem.9b01839. PubMed DOI

Joosten RP, et al. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC

Bakan A, et al. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinforma. Oxf. Engl. 2014;30:2681–2683. doi: 10.1093/bioinformatics/btu336. PubMed DOI PMC

Wold S. Validation of QSAR’s. Quant. Struct. -Act. Relatsh. 1991;10:191–193. doi: 10.1002/qsar.19910100302. DOI

Wold, S., Johansson, E. & Cocchi, M. in 3D QSAR in Drug Design. Theory, Methods, and Applications (ed. Kubinyi, H.) 523–550 (ESCOM Science Publisher, 1993).

Wold S, Dunn WJ. Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability. J. Chem. Inf. Comput. Sci. 1983;23:6–13. doi: 10.1021/ci00037a002. DOI

Johnson, K. A. in Methods in Enzymology Vol. 467 (eds. Johnson, M. L. & Brand, L.) Ch. 23, 601–626 (Academic Press, 2009).

Johnson KA. New standards for collecting and fitting steady state kinetic data. Beilstein J. Org. Chem. 2019;15:16–29. doi: 10.3762/bjoc.15.2. PubMed DOI PMC

O’Kane DJ, Lee J. Absolute calibration of luminometers with low-level light standards. Methods Enzymol. 2000;305:87–96. doi: 10.1016/S0076-6879(00)05479-3. PubMed DOI

Johnson KA, Simpson ZB, Blom T. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009;387:20–29. doi: 10.1016/j.ab.2008.12.024. PubMed DOI

Johnson KA, Simpson ZB, Blom T. FitSpace Explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal. Biochem. 2009;387:30–41. doi: 10.1016/j.ab.2008.12.025. PubMed DOI

Bagshaw, C. R. Biomolecular Kinetics: A Step-by-Step Guide (CRC Press, 2017).

Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Hydrog. Exch. Mass Spectrom. 2011;302:53–58.

Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI

Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh ewald method on GPU hardware. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI

Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J. Chem. Phys. 2011;134:065101. doi: 10.1063/1.3554380. PubMed DOI

Feenstra KA, Hess B, Berendsen HJC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Jurcik A, et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34:3586–3588. doi: 10.1093/bioinformatics/bty386. PubMed DOI PMC

Kabsch W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC

McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Adams PD, et al. The Phenix software for automated determination of macromolecular structures. Methods Struct. Proteomics. 2011;55:94–106. PubMed PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.14453700.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace