Engineering the protein dynamics of an ancestral luciferase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/L002469/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34127663
PubMed Central
PMC8203615
DOI
10.1038/s41467-021-23450-z
PII: 10.1038/s41467-021-23450-z
Knihovny.cz E-zdroje
- MeSH
- buňky NIH 3T3 MeSH
- katalýza MeSH
- kinetika MeSH
- konformace proteinů MeSH
- luciferasy renil chemie genetika metabolismus MeSH
- luciferasy chemie genetika metabolismus MeSH
- mutace MeSH
- mutageneze MeSH
- myši MeSH
- proteinové inženýrství * MeSH
- savci MeSH
- simulace molekulární dynamiky * MeSH
- stabilita enzymů MeSH
- teplota MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luciferasy renil MeSH
- luciferasy MeSH
Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.
Department of Biochemistry University of Cambridge Cambridge UK
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Baier F, Copp JN, Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence–function relationships. Biochemistry. 2016;55:6375–6388. doi: 10.1021/acs.biochem.6b00723. PubMed DOI
Tyzack JD, Furnham N, Sillitoe I, Orengo CM, Thornton JM. Understanding enzyme function evolution from a computational perspective. Curr. Opin. Struct. Biol. 2017;47:131–139. doi: 10.1016/j.sbi.2017.08.003. PubMed DOI
Arnold FH. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. Engl. 2018;57:4143–4148. doi: 10.1002/anie.201708408. PubMed DOI PMC
Tóth-Petróczy Á, Tawfik DS. Protein insertions and deletions enabled by neutral roaming in sequence space. Mol. Biol. Evol. 2013;30:761–771. doi: 10.1093/molbev/mst003. PubMed DOI
Hochberg GKA, Thornton JW. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 2017;46:247–269. doi: 10.1146/annurev-biophys-070816-033631. PubMed DOI PMC
Thornton JW. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 2004;5:366–375. doi: 10.1038/nrg1324. PubMed DOI
Harms MJ, Thornton JW. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 2013;14:559–571. doi: 10.1038/nrg3540. PubMed DOI PMC
Zou T, Risso VA, Gavira JA, Sanchez-Ruiz JM, Ozkan SB. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol. Biol. Evol. 2014;32:132–143. doi: 10.1093/molbev/msu281. PubMed DOI
Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J. Am. Chem. Soc. 2013;135:2899–2902. doi: 10.1021/ja311630a. PubMed DOI
Chothia C, Gough J, Vogel C, Teichmann SA. Evolution of the protein repertoire. Science. 2003;300:1701. doi: 10.1126/science.1085371. PubMed DOI
Pascarella S, Argos P. Analysis of insertions/deletions in protein structures. J. Mol. Biol. 1992;224:461–471. doi: 10.1016/0022-2836(92)91008-D. PubMed DOI
Emond S, et al. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17061-3. PubMed DOI PMC
Skamaki K, et al. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc. Natl Acad. Sci. USA. 2020;117:27307–27318. doi: 10.1073/pnas.2002954117. PubMed DOI PMC
Chaloupkova R, et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019;9:4810–4823. doi: 10.1021/acscatal.9b01031. DOI
Koudelakova T, et al. Haloalkane dehalogenases: biotechnological applications. Biotechnol. J. 2013;8:32–45. doi: 10.1002/biot.201100486. PubMed DOI
Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA. 1991;88:4438–4442. doi: 10.1073/pnas.88.10.4438. PubMed DOI PMC
Loening AM, Fenn TD, Gambhir SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 2007;374:1017–1028. doi: 10.1016/j.jmb.2007.09.078. PubMed DOI PMC
Woo J, Howell MH, Arnim AGvon. Gvon Structure–function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 2008;17:725–735. doi: 10.1110/ps.073355508. PubMed DOI PMC
Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA. 2006;103:5869. doi: 10.1073/pnas.0510098103. PubMed DOI PMC
Loening AM, Fenn TD, Wu AM, Gambhir SS. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 2006;19:391–400. doi: 10.1093/protein/gzl023. PubMed DOI
Bradshaw RT, et al. Neurotransmitter transporter conformational dynamics using HDX-MS and molecular dynamics simulation. Biophys. J. 2018;114:207a. doi: 10.1016/j.bpj.2017.11.1161. DOI
Yeh H-W, Ai H-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. Palo Alto Calif. 2019;12:129–150. doi: 10.1146/annurev-anchem-061318-115027. PubMed DOI PMC
Chovancova E, et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Kipnis Y, Dellus-Gur E, Tawfik DS. TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng. Des. Sel. 2012;25:437–444. doi: 10.1093/protein/gzs023. PubMed DOI
Jones DD. Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 β-lactamase to an amino acid deletion. Nucleic Acids Res. 2005;33:e80–e80. doi: 10.1093/nar/gni077. PubMed DOI PMC
Fujii, R., Kitaoka, M. & Hayashi, K. in Directed Evolution Library Creation: Methods and Protocols (eds. Gillam, E. M. J., Copp, J. N. & Ackerley, D.) 151–158 (Springer, 2014).
Jones, D. D., Arpino, J. A. J., Baldwin, A. J. & Edmundson, M. C. in Directed Evolution Library Creation: Methods and Protocols (eds Gillam, E. M. J., Copp, J. N. & Ackerley, D.) 159–172 (Springer, 2014).
Obexer R, et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 2017;9:50–56. doi: 10.1038/nchem.2596. PubMed DOI
Khare SD, et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 2012;8:294. doi: 10.1038/nchembio.777. PubMed DOI PMC
Rockah-Shmuel L, Tawfik DS. Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage. Nucleic Acids Res. 2012;40:11627–11637. doi: 10.1093/nar/gks944. PubMed DOI PMC
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 2020;59:13204–13231. doi: 10.1002/anie.201901491. PubMed DOI
Mazurenko S, Prokop Z, Damborsky J. Machine learning in enzyme engineering. ACS Catal. 2020;10:1210–1223. doi: 10.1021/acscatal.9b04321. DOI
Lourenço JM, Esteves da Silva JCG, Pinto da Silva L. Combined experimental and theoretical study of Coelenterazine chemiluminescence in aqueous solution. J. Lumin. 2018;194:139–145. doi: 10.1016/j.jlumin.2017.10.025. DOI
Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Comparative study of the chemiluminescence of coelenterazine, coelenterazine-e and Cypridina luciferin with an experimental and theoretical approach. J. Photochem. Photobiol. B. 2019;190:21–31. doi: 10.1016/j.jphotobiol.2018.11.006. PubMed DOI
Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324:203–207. doi: 10.1126/science.1169375. PubMed DOI
Kreß N, Halder JM, Rapp LR, Hauer B. Unlocked potential of dynamic elements in protein structures: channels and loops. Energy Mech. Biol. 2018;47:109–116. PubMed
Nestl BM, Hauer B. Engineering of flexible loops in enzymes. ACS Catal. 2014;4:3201–3211. doi: 10.1021/cs500325p. DOI
Park H-S, et al. Design and evolution of new catalytic activity with an existing protein scaffold. Science. 2006;311:535–538. doi: 10.1126/science.1118953. PubMed DOI
Afriat-Jurnou L, Jackson CJ, Tawfik DS. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry. 2012;51:6047–6055. doi: 10.1021/bi300694t. PubMed DOI
Bornscheuer UT, et al. Engineering the third wave of biocatalysis. Nature. 2012;485:185–194. doi: 10.1038/nature11117. PubMed DOI
Romero PA, Arnold FH. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 2009;10:866–876. doi: 10.1038/nrm2805. PubMed DOI PMC
Emond, S. & Hollfelder, F. TRIAD: a transposition-based approach for gene mutagenesis by random short in-frame insertions and deletions for directed protein evolution. Protoc. Exch.10.21203/rs.3.pex-1448/v1 (2021).
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Holloway P, Trevors JT, Lee H. A colorimetric assay for detecting haloalkane dehalogenase activity. J. Microbiol. Methods. 1998;32:31–36. doi: 10.1016/S0167-7012(98)00008-6. DOI
Buryska T, et al. Controlled oil/water partitioning of hydrophobic substrates extending the bioanalytical applications of droplet-based microfluidics. Anal. Chem. 2019;91:10008–10015. doi: 10.1021/acs.analchem.9b01839. PubMed DOI
Joosten RP, et al. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC
Bakan A, et al. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinforma. Oxf. Engl. 2014;30:2681–2683. doi: 10.1093/bioinformatics/btu336. PubMed DOI PMC
Wold S. Validation of QSAR’s. Quant. Struct. -Act. Relatsh. 1991;10:191–193. doi: 10.1002/qsar.19910100302. DOI
Wold, S., Johansson, E. & Cocchi, M. in 3D QSAR in Drug Design. Theory, Methods, and Applications (ed. Kubinyi, H.) 523–550 (ESCOM Science Publisher, 1993).
Wold S, Dunn WJ. Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability. J. Chem. Inf. Comput. Sci. 1983;23:6–13. doi: 10.1021/ci00037a002. DOI
Johnson, K. A. in Methods in Enzymology Vol. 467 (eds. Johnson, M. L. & Brand, L.) Ch. 23, 601–626 (Academic Press, 2009).
Johnson KA. New standards for collecting and fitting steady state kinetic data. Beilstein J. Org. Chem. 2019;15:16–29. doi: 10.3762/bjoc.15.2. PubMed DOI PMC
O’Kane DJ, Lee J. Absolute calibration of luminometers with low-level light standards. Methods Enzymol. 2000;305:87–96. doi: 10.1016/S0076-6879(00)05479-3. PubMed DOI
Johnson KA, Simpson ZB, Blom T. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009;387:20–29. doi: 10.1016/j.ab.2008.12.024. PubMed DOI
Johnson KA, Simpson ZB, Blom T. FitSpace Explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal. Biochem. 2009;387:30–41. doi: 10.1016/j.ab.2008.12.025. PubMed DOI
Bagshaw, C. R. Biomolecular Kinetics: A Step-by-Step Guide (CRC Press, 2017).
Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Hydrog. Exch. Mass Spectrom. 2011;302:53–58.
Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI
Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI
Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh ewald method on GPU hardware. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI
Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J. Chem. Phys. 2011;134:065101. doi: 10.1063/1.3554380. PubMed DOI
Feenstra KA, Hess B, Berendsen HJC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI
Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Jurcik A, et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34:3586–3588. doi: 10.1093/bioinformatics/bty386. PubMed DOI PMC
Kabsch W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Adams PD, et al. The Phenix software for automated determination of macromolecular structures. Methods Struct. Proteomics. 2011;55:94–106. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Automated Engineering Protein Dynamics via Loop Grafting: Improving Renilla Luciferase Catalysis
Illuminating the mechanism and allosteric behavior of NanoLuc luciferase
Machine Learning-Guided Protein Engineering
SBILib: a handle for protein modeling and engineering
LoopGrafter: a web tool for transplanting dynamical loops for protein engineering
figshare
10.6084/m9.figshare.14453700.v1