Automated Engineering Protein Dynamics via Loop Grafting: Improving Renilla Luciferase Catalysis

. 2025 Feb 21 ; 15 (4) : 3391-3404. [epub] 20250211

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40013243

Engineering protein dynamics is a challenging and unsolved problem in protein design. Loop transplantation or loop grafting has been previously employed to transfer dynamic properties between proteins. We recently released a LoopGrafter Web server to execute the loop grafting task, employing eight computational tools and one database. The LoopGrafter method relies on the prediction of the local dynamic behavior of the elements to be transplanted and has successfully reconstructed previously engineered sequences. However, it was unclear whether catalytically competitive previously uncharacterized designs could be obtained by this method. Here, we address this question, showing how LoopGrafter generates viable loop-grafted chimeras of luciferases, how these chimeras encompass the activity of interest and unique kinetic properties, and how all this process is done fully automatically and agnostic of any previous knowledge. All constructed designs proved to be catalytically active, and the most active one improved the activity of the template enzyme by 4 orders of magnitude. The computational details and parameter optimization of the sequence pairing step of the LoopGrafter workflow are revealed. The optimized and experimentally validated loop grafting workflow available as a fully automated Web server represents a powerful approach for engineering catalytically efficient enzymes by modification of protein dynamics.

Zobrazit více v PubMed

Coelho P. S.; Brustad E. M.; Kannan A.; Arnold F. H. Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science 2013, 339 (6117), 307–310. 10.1126/science.1231434. PubMed DOI

Schmidt M.; Hasenpusch D.; Kähler M.; Kirchner U.; Wiggenhorn K.; Langel W.; Bornscheuer U. T. Directed Evolution of an Esterase from Pseudomonas Fluorescens Yields a Mutant with Excellent Enantioselectivity and Activity for the Kinetic Resolution of a Chiral Building Block. ChemBioChem 2006, 7 (5), 805–809. 10.1002/cbic.200500546. PubMed DOI

Rahnama S.; Saffar B.; Kahrani Z. F.; Nazari M.; Emamzadeh R. Super RLuc8: A Novel Engineered Renilla Luciferase with a Red-Shifted Spectrum and Stable Light Emission. Enzyme Microb. Technol. 2017, 96, 60–66. 10.1016/j.enzmictec.2016.09.009. PubMed DOI

Hughes G.; Lewis J. C. Introduction: Biocatalysis in Industry. Chem. Rev. 2018, 118 (1), 1–3. 10.1021/acs.chemrev.7b00741. PubMed DOI

Sun H.; Zhang H.; Ang E. L.; Zhao H. Biocatalysis for the Synthesis of Pharmaceuticals and Pharmaceutical Intermediates. Bioorg. Med. Chem. 2018, 26 (7), 1275–1284. 10.1016/j.bmc.2017.06.043. PubMed DOI

Sheldon R. A.; Brady D.; Bode M. L. The Hitchhiker’s Guide to Biocatalysis: Recent Advances in the Use of Enzymes in Organic Synthesis. Chem. Sci. 2020, 11 (10), 2587–2605. 10.1039/C9SC05746C. PubMed DOI PMC

Winkler C. K.; Schrittwieser J. H.; Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci. 2021, 7 (1), 55–71. 10.1021/acscentsci.0c01496. PubMed DOI PMC

Miller D. C.; Athavale S. V.; Arnold F. H. Combining Chemistry and Protein Engineering for New-to-Nature Biocatalysis. Nat. Synth. 2022, 1 (1), 18–23. 10.1038/s44160-021-00008-x. PubMed DOI PMC

Chen K.; Arnold F. H. Enzyme Engineering for Nonaqueous Solvents: Random Mutagenesis to Enhance Activity of Subtilisin E in Polar Organic Media. Bio/Technology 1991, 9 (11), 1073–1077. 10.1038/nbt1191-1073. PubMed DOI

Arnold F. H. Directed Evolution: Creating Biocatalysts for the Future. Chem. Eng. Sci. 1996, 51 (23), 5091–5102. 10.1016/S0009-2509(96)00288-6. DOI

Nobel Media A. B.The Nobel Prize in Chemistry 2018. https://www.nobelprize.org/prizes/chemistry/2018/summary/ (accessed 01 21, 2025).

Mullaney J. M.; Mills R. E.; Pittard W. S.; Devine S. E. Small Insertions and Deletions (INDELs) in Human Genomes. Hum. Mol. Genet. 2010, 19 (R2), R131–R136. 10.1093/hmg/ddq400. PubMed DOI PMC

Miton C. M.; Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023, 62 (2), 148–157. 10.1021/acs.biochem.2c00188. PubMed DOI

Shortle D.; Sondek J. The Emerging Role of Insertions and Deletions in Protein Engineering. Curr. Opin. Biotechnol. 1995, 6 (4), 387–393. 10.1016/0958-1669(95)80067-0. PubMed DOI

Fujii R. RAISE: A Simple and Novel Method of Generating Random Insertion and Deletion Mutations. Nucleic Acids Res. 2006, 34 (4), e3010.1093/nar/gnj032. PubMed DOI PMC

Jones D. D.; Arpino J. A. J.; Baldwin A. J.; Edmundson M. C. Transposon-Based Approaches for Generating Novel Molecular Diversity During Directed. Evolution 2014, 1179, 159–172. 10.1007/978-1-4939-1053-3_11. PubMed DOI

Emond S.; Petek M.; Kay E. J.; Heames B.; Devenish S. R. A.; Tokuriki N.; Hollfelder F. Accessing Unexplored Regions of Sequence Space in Directed Enzyme Evolution via Insertion/Deletion Mutagenesis. Nat. Commun. 2020, 11 (1), 3469.10.1038/s41467-020-17061-3. PubMed DOI PMC

Apic G.; Russell R. B. Domain Recombination: A Workhorse for Evolutionary Innovation. Sci. Signal 2010, 3 (139), pe30.10.1126/scisignal.3139pe30. PubMed DOI

Bedbrook C. N.; Rice A. J.; Yang K. K.; Ding X.; Chen S.; LeProust E. M.; Gradinaru V.; Arnold F. H. Structure-Guided SCHEMA Recombination Generates Diverse Chimeric Channelrhodopsins. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (13), E262410.1073/pnas.1700269114. PubMed DOI PMC

Dodani S. C.; Kiss G.; Cahn J. K. B.; Su Y.; Pande V. S.; Arnold F. H. Discovery of a Regioselectivity Switch in Nitrating P450s Guided by Molecular Dynamics Simulations and Markov Models. Nat. Chem. 2016, 8 (5), 419–425. 10.1038/nchem.2474. PubMed DOI PMC

Park H.-S.; Nam S.-H.; Lee J. K.; Yoon C. N.; Mannervik B.; Benkovic S. J.; Kim H.-S. Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold. Science 2006, 311 (5760), 535–538. 10.1126/science.1118953. PubMed DOI

Tang H.; Shi K.; Shi C.; Aihara H.; Zhang J.; Du G. Enhancing Subtilisin Thermostability through a Modified Normalized B-Factor Analysis and Loop-Grafting Strategy. J. Biol. Chem. 2019, 294 (48), 18398–18407. 10.1074/jbc.RA119.010658. PubMed DOI PMC

Marek M.; Chaloupkova R.; Prudnikova T.; Sato Y.; Rezacova P.; Nagata Y.; Kuta Smatanova I.; Damborsky J. Structural and Catalytic Effects of Surface Loop-Helix Transplantation within Haloalkane Dehalogenase Family. Comput. Struct. Biotechnol. J. 2020, 18, 1352–1362. 10.1016/j.csbj.2020.05.019. PubMed DOI PMC

Tóth-Petróczy A. ´.; Tawfik D. S. The Robustness and Innovability of Protein Folds. Curr. Opin. Struct. Biol. 2014, 26, 131–138. 10.1016/j.sbi.2014.06.007. PubMed DOI

Yu H.; Dalby P. A. Exploiting Correlated Molecular-Dynamics Networks to Counteract Enzyme Activity-Stability Trade-Off. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (52), E12192–E12200. 10.1073/pnas.1812204115. PubMed DOI PMC

Tawfik D. S. Loop Grafting and the Origins of Enzyme Species. Science 2006, 311 (5760), 475–476. 10.1126/science.1123883. PubMed DOI

Nestl B. M.; Hauer B. Engineering of Flexible Loops in Enzymes. ACS Catal. 2014, 4 (9), 3201–3211. 10.1021/cs500325p. DOI

Li C.; Hu B.-C.; Wen Z.; Hu D.; Liu Y.-Y.; Chu Q.; Wu M.-C. Greatly Enhancing the Enantioselectivity of PvEH2, a Phaseolus Vulgaris Epoxide Hydrolase, towards Racemic 1,2-Epoxyhexane via Replacing Its Partial Cap-Loop. Int. J. Biol. Macromol. 2020, 156, 225–232. 10.1016/j.ijbiomac.2020.04.071. PubMed DOI

Ma Q.; Wang X.; Luan F.; Han P.; Zheng X.; Yin Y.; Zhang X.; Zhang Y.; Gao X. Functional Studies on an Indel Loop between the Subtypes of Meso -Diaminopimelate Dehydrogenase. ACS Catal. 2022, 12 (12), 7124–7133. 10.1021/acscatal.2c01799. DOI

Liu C.; Zhao J.; Liu J.; Guo X.; Rao D.; Liu H.; Zheng P.; Sun J.; Ma Y. Simultaneously Improving the Activity and Thermostability of a New Proline 4-Hydroxylase by Loop Grafting and Site-Directed Mutagenesis. Appl. Microbiol. Biotechnol. 2019, 103 (1), 265–277. 10.1007/s00253-018-9410-x. PubMed DOI

Wójcik M.; Szala K.; Merkerk R.; Quax W. J.; Boersma Y. L. Engineering the Specificity of < scp> Streptococcus Pyogenes </Scp> Sortase A by Loop Grafting. Proteins: Struct., Funct., Bioinf. 2020, 88 (11), 1394–1400. 10.1002/prot.25958. PubMed DOI PMC

Chaloupkova R.; Liskova V.; Toul M.; Markova K.; Sebestova E.; Hernychova L.; Marek M.; Pinto G. P.; Pluskal D.; Waterman J.; Prokop Z.; Damborsky J. Light-Emitting Dehalogenases: Reconstruction of Multifunctional Biocatalysts. ACS Catal. 2019, 9 (6), 4810–4823. 10.1021/acscatal.9b01031. DOI

Schenkmayerova A.; Pinto G. P.; Toul M.; Marek M.; Hernychova L.; Planas-Iglesias J.; Daniel Liskova V.; Pluskal D.; Vasina M.; Emond S.; Dörr M.; Chaloupkova R.; Bednar D.; Prokop Z.; Hollfelder F.; Bornscheuer U. T.; Damborsky J. Engineering the Protein Dynamics of an Ancestral Luciferase. Nat. Commun. 2021, 12 (1), 3616.10.1038/s41467-021-23450-z. PubMed DOI PMC

Kreß N.; Halder J. M.; Rapp L. R.; Hauer B. Unlocked Potential of Dynamic Elements in Protein Structures: Channels and Loops. Curr. Opin. Chem. Biol. 2018, 47, 109–116. 10.1016/j.cbpa.2018.09.010. PubMed DOI

Shirvanizadeh N.; Vriend G.; Arab S. S. Loop Modelling 1.0. J. Mol. Graph Model 2018, 84, 64–68. 10.1016/j.jmgm.2018.06.001. PubMed DOI

Karami Y.; Rey J.; Postic G.; Murail S.; Tufféry P.; de Vries S. J. DaReUS-Loop: A Web Server to Model Multiple Loops in Homology Models. Nucleic Acids Res. 2019, 47 (W1), W423–W428. 10.1093/nar/gkz403. PubMed DOI PMC

Ko J.; Lee D.; Park H.; Coutsias E. A.; Lee J.; Seok C. The FALC-Loop Web Server for Protein Loop Modeling. Nucleic Acids Res. 2011, 39 (suppl), W210–W214. 10.1093/nar/gkr352. PubMed DOI PMC

Bonet J.; Segura J.; Planas-Iglesias J.; Oliva B.; Fernandez-Fuentes N. Frag’r’Us: Knowledge-Based Sampling of Protein Backbone Conformations for de Novo Structure-Based Protein Design. Bioinformatics 2014, 30 (13), 1935–1936. 10.1093/bioinformatics/btu129. PubMed DOI

Planas-Iglesias J.; Opaleny F.; Ulbrich P.; Stourac J.; Sanusi Z.; Pinto G. P.; Schenkmayerova A.; Byska J.; Damborsky J.; Kozlikova B.; Bednar D. LoopGrafter: A Web Tool for Transplanting Dynamical Loops for Protein Engineering. Nucleic Acids Res. 2022, 50 (W1), W465–W473. 10.1093/nar/gkac249. PubMed DOI PMC

Ferruz N.; Noske J.; Höcker B. Protlego: A Python Package for the Analysis and Design of Chimeric Proteins. Bioinformatics 2021, 37 (19), 3182–3189. 10.1093/bioinformatics/btab253. PubMed DOI PMC

Schenkmayerova A.; Toul M.; Pluskal D.; Baatallah R.; Gagnot G.; Pinto G. P.; Santana V. T.; Stuchla M.; Neugebauer P.; Chaiyen P.; Damborsky J.; Bednar D.; Janin Y. L.; Prokop Z.; Marek M. Catalytic Mechanism for Renilla-Type Luciferases. Nat. Catal. 2023, 6 (1), 23–38. 10.1038/s41929-022-00895-z. DOI

Toul M.; Smith A.; Marek M.; Pinto G. J.; Planas-Iglesias J.; Pluskal D.; Vasina M.; Bednar D.; Prokop Z.; Damborsky J.. Coelenterazine-Utilizing Luciferases with Stable Glow-Type Light Emission, Increased Substrate Affinity, Suppresed Product Inhibition, and Modulated Emission Wavelengths, and Methods of Producing and Using Thereof. WO 2023021023 A1, 2023.

Loening A. M.; Fenn T. D.; Gambhir S. S. Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis. J. Mol. Biol. 2007, 374 (4), 1017–1028. 10.1016/j.jmb.2007.09.078. PubMed DOI PMC

Berman H. M. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC

Shindyalov I. N.; Bourne P. E. Protein Structure Alignment by Incremental Combinatorial Extension (CE) of the Optimal Path. Protein Eng. 1998, 11 (9), 739–747. 10.1093/protein/11.9.739. PubMed DOI

Liu W.; Wang Z.; You R.; Xie C.; Wei H.; Xiong Y.; Yang J.; Zhu S. PLMSearch: Protein Language Model Powers Accurate and Fast Sequence Search for Remote Homology. Nat. Commun. 2024, 15 (1), 2775.10.1038/s41467-024-46808-5. PubMed DOI PMC

Margelevičius M. GTalign: Spatial Index-Driven Protein Structure Alignment, Superposition, and Search. Nat. Commun. 2024, 15 (1), 7305.10.1038/s41467-024-51669-z. PubMed DOI PMC

Kabsch W.; Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637. 10.1002/bip.360221211. PubMed DOI

Schrödinger L. L. C.; DeLano W.. PyMOL. http://www.pymol.org/pymol.

Bahar I.; Atilgan A. R.; Erman B. Direct Evaluation of Thermal Fluctuations in Proteins Using a Single-Parameter Harmonic Potential. Fold Des 1997, 2 (3), 173–181. 10.1016/S1359-0278(97)00024-2. PubMed DOI

Doruker P.; Atilgan A. R.; Bahar I. Dynamics of Proteins Predicted by Molecular Dynamics Simulations and Analytical Approaches: Application to Alpha-Amylase Inhibitor. Proteins 2000, 40 (3), 512–524. 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO;2-M. PubMed DOI

Eyal E.; Yang L.-W.; Bahar I. Anisotropic Network Model: Systematic Evaluation and a New Web Interface. Bioinformatics 2006, 22 (21), 2619–2627. 10.1093/bioinformatics/btl448. PubMed DOI

Bakan A.; Dutta A.; Mao W.; Liu Y.; Chennubhotla C.; Lezon T. R.; Bahar I. Evol and ProDy for Bridging Protein Sequence Evolution and Structural Dynamics. Bioinformatics 2014, 30 (18), 2681–2683. 10.1093/bioinformatics/btu336. PubMed DOI PMC

Šali A.; Blundell T. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234 (3), 779–815. 10.1006/jmbi.1993.1626. PubMed DOI

Shen M.; Sali A. Statistical Potential for Assessment and Prediction of Protein Structures. Protein Sci. 2006, 15 (11), 2507–2524. 10.1110/ps.062416606. PubMed DOI PMC

O’Meara M. J.; Leaver-Fay A.; Tyka M. D.; Stein A.; Houlihan K.; DiMaio F.; Bradley P.; Kortemme T.; Baker D.; Snoeyink J.; Kuhlman B. Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11 (2), 609–622. 10.1021/ct500864r. PubMed DOI PMC

Mirdita M.; Schütze K.; Moriwaki Y.; Heo L.; Ovchinnikov S.; Steinegger M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19 (6), 679–682. 10.1038/s41592-022-01488-1. PubMed DOI PMC

Lin Z.; Akin H.; Rao R.; Hie B.; Zhu Z.; Lu W.; Smetanin N.; Verkuil R.; Kabeli O.; Shmueli Y.; dos Santos Costa A.; Fazel-Zarandi M.; Sercu T.; Candido S.; Rives A. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379 (6637), 1123–1130. 10.1126/science.ade2574. PubMed DOI

Baek M.; DiMaio F.; Anishchenko I.; Dauparas J.; Ovchinnikov S.; Lee G. R.; Wang J.; Cong Q.; Kinch L. N.; Schaeffer R. D.; Millán C.; Park H.; Adams C.; Glassman C. R.; DeGiovanni A.; Pereira J. H.; Rodrigues A. V.; van Dijk A. A.; Ebrecht A. C.; Opperman D. J.; Sagmeister T.; Buhlheller C.; Pavkov-Keller T.; Rathinaswamy M. K.; Dalwadi U.; Yip C. K.; Burke J. E.; Garcia K. C.; Grishin N. V.; Adams P. D.; Read R. J.; Baker D. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373 (6557), 871–876. 10.1126/science.abj8754. PubMed DOI PMC

Waterhouse A.; Bertoni M.; Bienert S.; Studer G.; Tauriello G.; Gumienny R.; Heer F. T.; de Beer T. A. P.; Rempfer C.; Bordoli L.; Lepore R.; Schwede T. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46 (W1), W296–W303. 10.1093/nar/gky427. PubMed DOI PMC

Johnson K. A.; Simpson Z. B.; Blom T. Global Kinetic Explorer: A New Computer Program for Dynamic Simulation and Fitting of Kinetic Data. Anal. Biochem. 2009, 387 (1), 20–29. 10.1016/j.ab.2008.12.024. PubMed DOI

Johnson K. A.; Simpson Z. B.; Blom T. FitSpace Explorer: An Algorithm to Evaluate Multidimensional Parameter Space in Fitting Kinetic Data. Anal. Biochem. 2009, 387 (1), 30–41. 10.1016/j.ab.2008.12.025. PubMed DOI

Gohl P.; Bonet J.; Fornes O.; Planas-Iglesias J.; Fernandez-Fuentes N.; Oliva B. SBILib: A Handle for Protein Modeling and Engineering. Bioinformatics 2023, 39 (10), btad613.10.1093/bioinformatics/btad613. PubMed DOI PMC

Bonet J.; Planas-Iglesias J.; Garcia-Garcia J.; Marín-López M. A.; Fernandez-Fuentes N.; Oliva B. ArchDB 2014: Structural Classification of Loops in Proteins. Nucleic Acids Res. 2014, 42 (D1), D315–D319. 10.1093/nar/gkt1189. PubMed DOI PMC

Malabanan M. M.; Amyes T. L.; Richard J. P. A Role for Flexible Loops in Enzyme Catalysis. Curr. Opin. Struct. Biol. 2010, 20 (6), 702–710. 10.1016/j.sbi.2010.09.005. PubMed DOI PMC

Hueting D. A.; Vanga S. R.; Syrén P.-O. Thermoadaptation in an Ancestral Diterpene Cyclase by Altered Loop Stability. J. Phys. Chem. B 2022, 126 (21), 3809–3821. 10.1021/acs.jpcb.1c10605. PubMed DOI PMC

Porebski B. T.; Conroy P. J.; Drinkwater N.; Schofield P.; Vazquez-Lombardi R.; Hunter M. R.; Hoke D. E.; Christ D.; McGowan S.; Buckle A. M. Circumventing the Stability-Function Trade-off in an Engineered FN3 Domain. Protein Eng. Des. Sel. 2016, 29 (11), 541–550. 10.1093/protein/gzw046. PubMed DOI PMC

Shen R.; Crean R. M.; Olsen K. J.; Corbella M.; Calixto A. R.; Richan T.; Brandão T. A. S.; Berry R. D.; Tolman A.; Loria J. P.; Johnson S. J.; Kamerlin S. C. L.; Hengge A. C. Insights into the Importance of WPD-Loop Sequence for Activity and Structure in Protein Tyrosine Phosphatases. Chem. Sci. 2022, 13 (45), 13524–13540. 10.1039/D2SC04135A. PubMed DOI PMC

Zhang Y. TM-Align: A Protein Structure Alignment Algorithm Based on the TM-Score. Nucleic Acids Res. 2005, 33 (7), 2302–2309. 10.1093/nar/gki524. PubMed DOI PMC

Li Z.; Jaroszewski L.; Iyer M.; Sedova M.; Godzik A. FATCAT 2.0: Towards a Better Understanding of the Structural Diversity of Proteins. Nucleic Acids Res. 2020, 48 (W1), W60–W64. 10.1093/nar/gkaa443. PubMed DOI PMC

Siddiqui K. S. Defying the Activity–Stability Trade-off in Enzymes: Taking Advantage of Entropy to Enhance Activity and Thermostability. Crit Rev. Biotechnol 2017, 37 (3), 309–322. 10.3109/07388551.2016.1144045. PubMed DOI

Crean R. M.; Gardner J. M.; Kamerlin S. C. L. Harnessing Conformational Plasticity to Generate Designer Enzymes. J. Am. Chem. Soc. 2020, 142 (26), 11324–11342. 10.1021/jacs.0c04924. PubMed DOI PMC

Campbell E. C.; Correy G. J.; Mabbitt P. D.; Buckle A. M.; Tokuriki N.; Jackson C. J. Laboratory Evolution of Protein Conformational Dynamics. Curr. Opin. Struct. Biol. 2018, 50, 49–57. 10.1016/j.sbi.2017.09.005. PubMed DOI

Yeh A. H.-W.; Norn C.; Kipnis Y.; Tischer D.; Pellock S. J.; Evans D.; Ma P.; Lee G. R.; Zhang J. Z.; Anishchenko I.; Coventry B.; Cao L.; Dauparas J.; Halabiya S.; DeWitt M.; Carter L.; Houk K. N.; Baker D. De Novo Design of Luciferases Using Deep Learning. Nature 2023, 614 (7949), 774–780. 10.1038/s41586-023-05696-3. PubMed DOI PMC

Drew K.; Renfrew P. D.; Craven T. W.; Butterfoss G. L.; Chou F.-C.; Lyskov S.; Bullock B. N.; Watkins A.; Labonte J. W.; Pacella M.; Kilambi K. P.; Leaver-Fay A.; Kuhlman B.; Gray J. J.; Bradley P.; Kirshenbaum K.; Arora P. S.; Das R.; Bonneau R. Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS One 2013, 8 (7), e6705110.1371/journal.pone.0067051. PubMed DOI PMC

Dauparas J.; Anishchenko I.; Bennett N.; Bai H.; Ragotte R. J.; Milles L. F.; Wicky B. I. M.; Courbet A.; de Haas R. J.; Bethel N.; Leung P. J. Y.; Huddy T. F.; Pellock S.; Tischer D.; Chan F.; Koepnick B.; Nguyen H.; Kang A.; Sankaran B.; Bera A. K.; King N. P.; Baker D. Robust Deep Learning–Based Protein Sequence Design Using ProteinMPNN. Science 2022, 378 (6615), 49–56. 10.1126/science.add2187. PubMed DOI PMC

Corbella M.; Pinto G. P.; Kamerlin S. C. L. Loop Dynamics and the Evolution of Enzyme Activity. Nat. Rev. Chem 2023, 7 (8), 536–547. 10.1038/s41570-023-00495-w. PubMed DOI

Syed A. J.; Anderson J. C. Applications of Bioluminescence in Biotechnology and Beyond. Chem. Soc. Rev. 2021, 50 (9), 5668–5705. 10.1039/D0CS01492C. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace