Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32612758
PubMed Central
PMC7306515
DOI
10.1016/j.csbj.2020.05.019
PII: S2001-0370(20)30282-8
Knihovny.cz E-zdroje
- Klíčová slova
- Access tunnel, Biocatalysis, Enantioselectivity, Enzyme engineering, Haloalkane dehalogenase (HLD), Loop-helix transplantation, Protein design, X-ray crystallography,
- Publikační typ
- časopisecké články MeSH
Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and α4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (ΔT m = -5 to 6 °C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear β-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties.
Zobrazit více v PubMed
Newton M.S., Arcus V.L., Gerth M.L., Patrick W.M. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol. 2018;48:110–116. PubMed
Martínez Cuesta S., Rahman S., Furnham N., Thornton J.M. The classification and evolution of enzyme function. Biophys J. 2015;109:1082–1086. PubMed PMC
Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–193. PubMed
Singh R., Kumar M., Mittal A., Mehta P.K. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 2016;6 174-174. PubMed PMC
Sheldon R.A., Woodley J.M. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118:801–838. PubMed
Erb T.J., Jones P.R., Bar-Even A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol. 2017;37:56–62. PubMed PMC
Austin H.P., Allen M.D., Donohoe B.S., Rorrer N.A., Kearns F.L., Silveira R.L. Characterization and engineering of a plastic-degrading aromatic polyesterase. PNAS. 2018;115:E4350–E4357. PubMed PMC
Reetz M.T. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. PNAS. 2004;101:5716–5722. PubMed PMC
Chen B.S., Ribeiro de Souza F.Z. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv. 2019;9:2102–2115. PubMed PMC
Honig M., Sondermann P., Turner N.J., Carreira E.M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew Chem Int Ed. 2017;56:8942–8973. PubMed
Damborsky J., Chaloupkova R., Pavlova M., Chovancova E., Brezovsky J. Structure-function relationships and engineering of haloalkane dehalogenases. In: Timmis K.N., editor. Handbook of hydrocarbon and lipid microbiology. Springer; Berlin, Heidelberg: 2010. pp. 1081–1098.
Marek J., Vévodová J., Smatanová Kutá I., Nagata Y., Svensson L.A., Newman J. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. PubMed
Kaushik S., Marques S.M., Khirsariya P., Paruch K., Libichova L., Brezovsky J. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018;285:1456–1476. PubMed
Chaloupkova R., Sykorova J., Prokop Z., Jesenska A., Monincova M., Pavlova M. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem. 2003;278:52622–52628. PubMed
Pieters R.J., Lutje Spelberg J.H., Kellogg R.M., Janssen D.B. The enantioselectivity of haloalkane dehalogenases. Tetrahedron Lett. 2001;42:469–471.
Prokop Z., Sato Y., Brezovsky J., Mozga T., Chaloupkova R., Koudelakova T. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed. 2010;49:6111–6115. PubMed
Chaloupkova R., Prokop Z., Sato Y., Nagata Y., Damborsky J. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature. FEBS J. 2011;278:2728–2738. PubMed
Liskova V., Stepankova V., Bednar D., Brezovsky J., Prokop Z., Chaloupkova R. Different structural origins of the enantioselectivity of haloalkane dehalogenases toward linear β-haloalkanes: open-solvated versus occluded-desolvated active sites. Angew Chem Int Ed. 2017;56:4719–4723. PubMed
Prudnikova T., Mozga T., Rezacova P., Chaloupkova R., Sato Y., Nagata Y. Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94. Acta Crystallographica Section F. 2009;65:353–356. PubMed PMC
Chaloupkova R., Prudnikova T., Rezacova P., Prokop Z., Koudelakova T., Daniel L. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D. 2014;70:1884–1897. PubMed
Monincova M., Prokop Z., Vevodova J., Nagata Y., Damborsky J. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-ray crystallography and microcalorimetry. Appl Environ Microbiol. 2007;73:2005–2008. PubMed PMC
Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol. 2014;10:428–430. PubMed
Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J. Substrate specificity of haloalkane dehalogenases. Biochem J. 2011;435:345–354. PubMed
Iwasaki I., Utsumi S., Ozawa T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn. 1952;25:226.
Chen C.S., Fujimoto Y., Girdaukas G., Sih C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 1982;104:7294–7299.
Kabsch W. XDS. Acta Crystallogr Section D. 2010;66:125–132. PubMed PMC
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–367. PubMed PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–242. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC
Painter J., Merritt E.A. TLSMD web server for the generation of multi-group TLS models. J Appl Crystallogr. 2006;39:109–111.
Winn M.D., Murshudov G.N., Papiz M.Z. Methods in enzymology. Academic Press; 2003. Macromolecular TLS refinement in REFMAC at moderate resolutions; pp. 300–321. PubMed
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Vaguine A.A., Richelle J., Wodak S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr Section D. 1999;55:191–205. PubMed