Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family

. 2020 ; 18 () : 1352-1362. [epub] 20200603

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32612758
Odkazy

PubMed 32612758
PubMed Central PMC7306515
DOI 10.1016/j.csbj.2020.05.019
PII: S2001-0370(20)30282-8
Knihovny.cz E-zdroje

Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and α4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (ΔT m = -5 to 6 °C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear β-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties.

Zobrazit více v PubMed

Newton M.S., Arcus V.L., Gerth M.L., Patrick W.M. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol. 2018;48:110–116. PubMed

Martínez Cuesta S., Rahman S., Furnham N., Thornton J.M. The classification and evolution of enzyme function. Biophys J. 2015;109:1082–1086. PubMed PMC

Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–193. PubMed

Singh R., Kumar M., Mittal A., Mehta P.K. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 2016;6 174-174. PubMed PMC

Sheldon R.A., Woodley J.M. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118:801–838. PubMed

Erb T.J., Jones P.R., Bar-Even A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol. 2017;37:56–62. PubMed PMC

Austin H.P., Allen M.D., Donohoe B.S., Rorrer N.A., Kearns F.L., Silveira R.L. Characterization and engineering of a plastic-degrading aromatic polyesterase. PNAS. 2018;115:E4350–E4357. PubMed PMC

Reetz M.T. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. PNAS. 2004;101:5716–5722. PubMed PMC

Chen B.S., Ribeiro de Souza F.Z. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv. 2019;9:2102–2115. PubMed PMC

Honig M., Sondermann P., Turner N.J., Carreira E.M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew Chem Int Ed. 2017;56:8942–8973. PubMed

Damborsky J., Chaloupkova R., Pavlova M., Chovancova E., Brezovsky J. Structure-function relationships and engineering of haloalkane dehalogenases. In: Timmis K.N., editor. Handbook of hydrocarbon and lipid microbiology. Springer; Berlin, Heidelberg: 2010. pp. 1081–1098.

Marek J., Vévodová J., Smatanová Kutá I., Nagata Y., Svensson L.A., Newman J. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. PubMed

Kaushik S., Marques S.M., Khirsariya P., Paruch K., Libichova L., Brezovsky J. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018;285:1456–1476. PubMed

Chaloupkova R., Sykorova J., Prokop Z., Jesenska A., Monincova M., Pavlova M. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem. 2003;278:52622–52628. PubMed

Pieters R.J., Lutje Spelberg J.H., Kellogg R.M., Janssen D.B. The enantioselectivity of haloalkane dehalogenases. Tetrahedron Lett. 2001;42:469–471.

Prokop Z., Sato Y., Brezovsky J., Mozga T., Chaloupkova R., Koudelakova T. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed. 2010;49:6111–6115. PubMed

Chaloupkova R., Prokop Z., Sato Y., Nagata Y., Damborsky J. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature. FEBS J. 2011;278:2728–2738. PubMed

Liskova V., Stepankova V., Bednar D., Brezovsky J., Prokop Z., Chaloupkova R. Different structural origins of the enantioselectivity of haloalkane dehalogenases toward linear β-haloalkanes: open-solvated versus occluded-desolvated active sites. Angew Chem Int Ed. 2017;56:4719–4723. PubMed

Prudnikova T., Mozga T., Rezacova P., Chaloupkova R., Sato Y., Nagata Y. Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94. Acta Crystallographica Section F. 2009;65:353–356. PubMed PMC

Chaloupkova R., Prudnikova T., Rezacova P., Prokop Z., Koudelakova T., Daniel L. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D. 2014;70:1884–1897. PubMed

Monincova M., Prokop Z., Vevodova J., Nagata Y., Damborsky J. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-ray crystallography and microcalorimetry. Appl Environ Microbiol. 2007;73:2005–2008. PubMed PMC

Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol. 2014;10:428–430. PubMed

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J. Substrate specificity of haloalkane dehalogenases. Biochem J. 2011;435:345–354. PubMed

Iwasaki I., Utsumi S., Ozawa T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn. 1952;25:226.

Chen C.S., Fujimoto Y., Girdaukas G., Sih C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 1982;104:7294–7299.

Kabsch W. XDS. Acta Crystallogr Section D. 2010;66:125–132. PubMed PMC

Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–367. PubMed PMC

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–242. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC

Painter J., Merritt E.A. TLSMD web server for the generation of multi-group TLS models. J Appl Crystallogr. 2006;39:109–111.

Winn M.D., Murshudov G.N., Papiz M.Z. Methods in enzymology. Academic Press; 2003. Macromolecular TLS refinement in REFMAC at moderate resolutions; pp. 300–321. PubMed

Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC

Vaguine A.A., Richelle J., Wodak S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr Section D. 1999;55:191–205. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...