Effect of Compositionally Different Substrates on Elemental Properties of Bay Bolete Mushrooms: Case Study of 34 Essential and Non-essential Elements from Six Areas Affected Differently by Industrial Pollution

. 2024 Oct 31 ; () : . [epub] 20241031

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39477854

Grantová podpora
311450 Česká geologická služba

Odkazy

PubMed 39477854
DOI 10.1007/s12011-024-04429-5
PII: 10.1007/s12011-024-04429-5
Knihovny.cz E-zdroje

We studied concentrations of 34 essential and non-essential elements in samples of edible Bay Bolete (Imleria badia) mushrooms added by samples of the growing substrate and bioavailable fraction. The samples were collected from six forested sites affected differently by industrial pollution and underlain by compositionally contrasting bedrock: granite, amphibolite, and peridotite. In all cases, mushrooms behaved as a bioconcentrating system for elements such as Ag, K, P, Rb, S, and Se (BCF > 1) being a bioexcluding system for the rest of the elements analyzed (BCF < 1). Most analyzed elements displayed moderate to high within-mushroom mobility being accumulated preferably in the apical parts of the mushroom's fruiting body (TF > 1). The highest mobility was demonstrated by Cd and Cu. Sodium was the only element with significantly low mobility (TF < 1), and it accumulated preferably in the stipe. Imleria badia seems to be sensitive to the accumulation of elements such as As, Cd, and Pb from the atmospheric deposits. Specific geochemistry of the growing substrate was reflected to different extend in the accumulation of elements such as Ag, Cu, Rb, S, Al, Ca, Fe, Ba, and Na in the mushroom's fruiting bodies.

Zobrazit více v PubMed

Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem 122:2–15. https://doi.org/10.1016/j.foodchem.2010.02.045 DOI

Chojnacka A, Jarzyńska G, Lewandowska M, Nnorom ICh, Falandysz J (2013) Multivariate analysis of minerals in Yellow-cracking Bolete (Xerocomus subtomentosus) collected at one site over three years. Fresenius Environ Bull 22:2707–2712

Zocher A-L, Kraemer D, Merschel G, Bau M (2018) Distribution of major and trace elements in the bolete mushroom Suillius luteus and the bioavailability of rare earth elements. Chem Geol 483:491–500. https://doi.org/10.1016/j.chemgeo.2018.03.019 DOI

Nowakowski P, Markiewicz-Żukowska R, Soroczyńska J, Puścion-Jakubik A, Mielcarek K, Borawska MH, Socha K (2021) Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J Food Compos Anal 96:103698. https://doi.org/10.1016/j.jfca.2020.103698 DOI

Liu S, Liu H, Li J, Wang Y (2022) Research progress on elements of wild edible mushrooms. J Fungi 8:964. https://doi.org/10.103390/jof8090964

Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wzdmańska D, Bielawski L, Wang J, Falandysz J (2010) Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research 5: 3050–3055Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem 113: 9–16. https://doi.org/10.1016/j.foodchem.2008.07.077

Chojnacka A, Jarzyńska G, Drewnowska M, Nnorom ICh, Falandysz J (2012) Mercury in Yellow-cracking Boletes Xerocomus subtomentosus mushrooms and soils from spatially diverse sites: assessment of bioconcentration potential by species and human intake. J Environ Sci Health, Part A 47:2094–3011. https://doi.org/10.1080/10934529.2012.695990 DOI

Jarzyńska G, Chojnacka A, Dryżałowska A, Nnorom ICh, Falandysz J (2012) Concentrations and bioconcentration factors of minerals by Yellow-cracking Bolete (Xerocomus subtomentosus) mushroom collected in Noteć Forest, Poland. J Food Sci 77:H202–H206. https://doi.org/10.1111/j.1750-3841.2012.02876.x PubMed DOI

Damodaran D, Vidya Shetty K, Raj Mohan B (2014) Uptake of certain heavy metals from contaminated soil by mushroom – Galerina vittiformis. Ecotoxicol Environ Safe 104:414–422. https://doi.org/10.1016/j.ecoenv.2013.10.033 DOI

Kojta AK, Gucia M, Krasińska G, Saba M, Nnorom, ICh, Falandysz J (2016) Mineral constituents of edible parasol (Macrolepiota procera) mushrooms and the underlying substrate from upland regions of Poland: bioconcentration potential, intake benefits, and toxicological risk. Pol J Environ Stud 25: 1–16. https://doi.org/10.15244/pjoes/62997

Zsigmond AR, Kántor I, May Y, Urák I, Héberger K (2020) Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania). Chemosphere 238:124566. https://doi.org/10.1016/j.chemosphere.2019.124566 PubMed DOI

Hanley ML, Vukicevich E, Rice AM, Richardson JB (2024) Uptake of toxic and nutrient elements by foraged edible and medicinal mushrooms (sporocarps) throughout Connecticut River Valley, New England, USA. Environ Sci Pollut Res 31:5526–5539. https://doi.org/10.1007/s11356-023-31290-1 DOI

Barcan VSh, Kovnatsky EF, Smetannikova MS (1998) Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut 103:173–195. https://doi.org/10.1023/A:1004972632578 DOI

Collin-Hansen Ch, Andersen RA, Steinness E (2005) Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res 109:1386–1396. https://doi.org/10.1017/S0953756205004016 PubMed DOI

Falandysz J (2016) Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator andm mycoremediator of polluted soils? Environ Sci Polltion Res 23:7444–7451. https://doi.org/10.1007/s11356-015-5971-8 DOI

Świsłowski P, Rajfur M (2018) Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Engineer S 25:557–568. https://doi.org/10.1515/eces-2018-0037 DOI

Ediriweera AN, Karunarathna SC, Yapa PN, Schaefer DA, Ranasinghe AK, Suwannarach N, Xu J (2022) Ectomycorrhizal mushrooms as a natural bio-indicator for assessment of heavy metal pollution. Agronomy 12: 1041. https://doi.org/10.3390/agronomy 12051041

Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms; health benefits and risks. Appl Microbiol Biotechnol 97:477–501. https://doi.org/10.1007/s00253-012-4552-8 PubMed DOI

Đurđić S, Stanković V, Ražić S, Mutić J (2021) Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer – soil. Environ Sci Pollut Res 28:59003–59014. https://doi.org/10.1007/s11356-020-07947-6 DOI

Falandysz J, Zalewska T, Saniewski M, Fernandes AR (2021) An evaluation of the occurrence and trends in DOI

Strumińska-Parulska D, Falandysz J, Moniakowska A (2021) Beta-emitting radionuclides in wild mushrooms and potential radiotoxicity for their consumers. Trends Food Sci Technol 114:672–683. https://doi.org/10.1016/j.tifs.2021.06.015 DOI

Strumińska-Parulska D, Falandysz J, Moniakowska A (2022) On the occurrence, origin and intake of the nuclides 210Po and 210Pb, in sclerotia of Wolfiporia cocos collected in China. Environ Sci Pollut Res 29:27209–27221. https://doi.org/10.1007/s11356-021-18313-5 DOI

Malinowska E, Szefer P, Falandysz J (2004) Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84: 405–16. https://doi.org/10.1016/S0308-8146(03)00250-4

Brzezicha-Cirocka J, Mędyk M, Falandysz J, Szefer P (2016) Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in Eastern Poland. Environ Sci Pollut Res 23:25517–25522. https://doi.org/10.1007/s11356-016-7371-0 DOI

Árvay J, Hauptvogl M, Demková L, Jančo I, Jakabová S, Mleczek M (2024) GIS-based visualization of elemental distribution in Neoboletus luridiformis fruiting body. Biological Trace Element Research. https://doi.org/10.1007/s12011-024-04320 –3Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122: 2–15. https://doi.org/10.1016/j.foodchem.2010.02.045

Borovička J, Braeuer S, Sácký J, Karmeník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ 648:1570–1581. https://doi.org/10.1016/j.scitotenv.2018.08.202 PubMed DOI

Borovička J, Konvalinková T, Žigová A, Ďurišová J, Gryndler M, Hršelová H, Kameník J, Leonhardt T, Sácký J (2019) Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. Sci Total Environ 694:133679. https://doi.org/10.1016/j.scitotenv.2019.133679 PubMed DOI

Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: Carmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. Sci Total Environ 826:154227. https://doi.org/10.1016/j.scitotenv.2022.154227 PubMed DOI

Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W (2020) Is arsenic responsible for the toxicity of the hyperaccumulating mushroom Sarcosphaera coronaria? Sci Total Environ 736:139524. https://doi.org/10.1016/j.scitotenv.2020.139524 PubMed DOI

Zabowski D, Zasoski RJ, Littke W, Ammirati J (1990) Metal content of fungal sporocarps from urban, rural, and sludge-treated sites. J Environ Qual 19:372–377. https://doi.org/10.2134/jeq1990.00472425001900030004x DOI

Ivanić M, Furdek Turk M, Tkalčec Z, Fiket Ž, Mešić A (2021) Distribution and origin of major, trace, and rare earth elements in wild edible mushrooms: urban vs. forest areas. J Fungi 7:1068. https://doi.org/10.3390/jof7121068 DOI

Voldrichova P, Chrastny V, Sipkova A, Farkas J, Novak M, Stepanova M, Krachler M, Veselovsky F, Blaha V, Prechova E, Komarek A, Bohdalkova L, Curik J, Mikova J, Erbanova L, Pacherova P (2014) Zinc isotope systematics in snow and ice accretions in Central European mountains. Chem Geol 388:130–141. https://doi.org/10.1016/j.chemgeo.2014.09.008 DOI

Novak M, Sipkova A, Chrastny V, Stepanova M, Voldrichova P, Veselovsky F, Prechova E, Blaha V, Curik J, Farkas J, Erbanova L, Bohdalkova L, Pasava J, Mikova J, Komarek A, Krachler M (2016) Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: using soluble and insoluble particles in snow and rime. Environ Pollut 218:1135–1146. https://doi.org/10.1016/j.envpol.2016.08.067 PubMed DOI

Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, Krám P, Lachmanová Z, Navrátil T, Štěpánek P, Tesař M, Evans CD (2016) Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ 140:456–468. https://doi.org/10.1016/j.atmosenv.2016.06.028 DOI

Pokorná P, Hovorka J, Hopke PK (2016) Elemental composition and source identification of very fine aerosol particles in a European pollution hot-spot. Atmospher Pollut Res 7:671–679. https://doi.org/10.1016/j.apr.2016.03.001 DOI

Prechova E, Sebek O, Novak M, Andronikov A, Strnad L, Chrastny V, Cabala J, Stepanova M, Pasava J, Martinkova E, Pacherova P, Blaha V, Curik J, Veselovsky F, Vitkova H (2023) Spatial and temporal trends in δ

Stojek K, Czortek P, Bobrowska-Korczak B, Krośniak M, Jaroszewicz B (2024) Fungal species and element type modulate the effects of environmental factors on the concentration of potentially toxic elements in mushrooms. Environ Pollut 353:124152. https://doi.org/10.1016/j.envpol.2024.124152 PubMed DOI

Kokkoris V, Massas I, Polemis E, Koutrotsios G, Zervakis GI (2019) Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci Total Environ 685:280–296. https://doi.org/10.1016/j.scitotenv.2019.05.447 PubMed DOI

Ab Rahman SMS, Naher L, Siddiquee S (2022) Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. Journal of Fungi 8:42. https://doi.org/10.3390/jof8010042 DOI

Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M (2023) Accumulation and within-mushroom distribution of elements in red cracking bolete (Xerocomellus chrysenteron) collected over the extended period from compositionally contrasting substrates. Environ Monitor Assess 195:1157. https://doi.org/10.1007/s10661-023-11786-6 DOI

Kojta AK, Jarzyńska G, Falandysz J (2012) Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor 121:76–82. https://doi.org/10.1016/j.foodchem.2016.01.006 DOI

Antonín V, Hagara L, Baier J (2019) Otto’s great atlas of the mushrooms. Otto Publishing House, Prague, Czech Republic, 432 pp. (in Czech)

Knauerová M, Slavíček J, Urubová L (2020) Atlas of the mushrooms (a guide to the Czech nature). Edika Publishing House, Prague, Czech Republic, 152 pp. (in Czech)

Vavřín I, Frýda J (1998) Michenerite PdBiTe and froodite PdBi

Pašava J, Vavřín I, Frýda J, Janoušek V, Jelínek E (2003) Geochemistry and mineralogy of the platinum-group elements in the Ransko gabbro-peridotite massif, Bohemian Massif (Czech Republic). Mineralium Deposita 38: 298–311. https://doi.org/10.1007/s00126-002-0343-y

Pokorný R (2013) NPR Ransko, Inventory survey. NPR Ransko, Agentura ochrany přírody a krajiny ČR 52 p. Open-file report (in Czech)

Vossler T, Cernikovsky L, Novak J, Placha H, Krejci B, Nikolova I, Chalupnickova E, Williams R (2015) An investigation of local and regional sources of fine particulate matter in Ostrava, the Czech Republic. Atmospher Pollut Res 6:454–463. https://doi.org/10.5094/APR.2015.050 DOI

Kopáček J, Hejzlar J, Krám P, Oulehle P, Posch M (2016) Effect of industrial dust on precipitation chemistry in the Czech Republic. Water Resources 103:30–37. https://doi.org/10.1016/j.waters.2016.07.017 DOI

Suchara I, Sucharova J (2002) Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water Air Soil Pollut 136:289–316. https://doi.org/10.1023/A:1015235924991 DOI

Mleczek M, Siwulski M, Kaczmarek Z, Rissmann I, Sobieralski K, Goliński P (2013) Concentration of the selected trace elements in Xerocomus badius mushroom bodies – a health risk for humans? Acta Scientiarum Polonorum 12:331–343 PubMed

Sotek Z, Stasińska M, Malinowski R, Pilarczyk R, Bąkowska M, Malinowska K, Radke P, Kubus M, Malinowska A, Bukowska A (2023) The role in the human diet of bioaccumulation of selenium, copper, zinc, manganese and iron in edible mushrooms in various habitat conditions of NW Poland – a case study. Sustainability 15:13334. https://doi.org/10.3390/su151813334 DOI

Krám P, Hruška J, Shanley JB (2012) Streamwater chemistry in three contrasting monolithologic catchments. App Geochem 27:1854–1863. https://doi.org/10.1016/j.apgeochem.2012.02.020 DOI

Krám P, Čuřík J, Veselovský F, Myška O, Hruška J, Štědrá V, Jarchovský T, Buss HL, Chuman T (2017) Hydrochemical fluxes and bedrock chemistry in three contrasting catchments underlain by felsic, mafic and ultramafic rocks. Procedia Earth Planet Sci 17:538–541. https://doi.org/10.1016/j.proeps.2016.12.136 DOI

Krám P, Oulehle P, Hruška J, Veselovský F, Čuřík J, Myška O, Novák M, McDowell WH (2019) Calcium and magnesium biochemistry in spruce catchment underlain by felsic, mafic and ultramafic rocks. E3S Web of Conferences 98:06007 DOI

Štědrá V, Krám P, Farkaš J (2015) Petrology and whole-rock geochemistry of metabasites from borehole cores in the Na Zeleném and Pluhův Bor catchments in the Slavkov Forest, western Bohemia. Geosci Res Rep 48:103–108 ((in Czech with English abstract))

Štědrá V, Jarchovský T, Krám P (2016) Lithium-rich granite in the Lysina-V1 borehole in the southern part of the Slavkov Forest, western Bohemia. Geosci Res Rep 49:137–142 ((in Czech with English abstract))

Dannhaus N, Wittmann H, Krám P, Christl M, von Blankenburg F (2018) Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric DOI

Klomínský J (2018) The Krkonoše-Jizera composite massif: never ending granite stories. Czech Geological Survey Publishing, Prague, p 145

Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M, Vitkova H, Antalova E (2023) Elemental and Cu-Zn isotope compositions of the two bolete mushrooms grown on contrasting substrates. App Geochem 150:105594. https://doi.org/10.1016/j.apgeochem.2023.105594 DOI

Dryżałowska A, Falandysz J (2014) Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distant locations: levels, intake and safety. Ecotoxicol Environ Safe 107:97–102. https://doi.org/10.1016/j.ecoenv.2014.05.020 DOI

Oulehle F, Hleb R, Houška J, Šamonil P, Hofmeister J, Hruška J (2010) Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts. Western Ukraine. Sci Total Environ 408:856–864. https://doi.org/10.1016/j.scitotenv.2009.10.059 PubMed DOI

Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut Res 18:890–896. https://doi.org/10.1007/s11356-011-0446-z DOI

Jarchovský T, Fediuk F, Klomínský J, Schovánek P (2010) Geochemical discrimination of the Liberec and Jizera granites in the western part of the Krkonoše-Jizera composite massif. Geosci Res Rep 43:219–222 ((in Czech with English abstract))

Souček J (1981) The geochemistry of the Devonian metabasites of the Hrubý and Nízký Jeseník Mts. Časopis pro mineralogii a geologii (Journal for Mineralogy and Geology) 26:126–142 ((in Czech))

Krám P, Oulehle F, Štědrá V, Hruška J, Shanley JB, Minocha R, Traister E (2009) Geoecology of a forest watershed underlain by serpentine in Central Europe. Northeast Nat 5:309–328 DOI

Misař Z (1979) Sulfide mineralization in the Ransko gabbro-peridotite massif. Canad Miner 17:299–307

Kaspari M, Powers JS (2016) Biogeochemistry and geographic ecology: embracing all twenty five elements required to build organisms. Am Nat 188:S62-73. https://doi.org/10.1086/687576 PubMed DOI

Galgowska M, Pieterzak-Flećko R (2020) Mineral composition of three popular wild mushrooms from Poland. Molecules 25:3588. https://doi.org/10.3390/molecules2516358 PubMed DOI PMC

Cejpková J, Grzndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumualtion heavy metals, metalloids, and chlotine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185. https://doi.org/10.1016/j.envpol.2016.08.009 PubMed DOI

Costa-Silva F, Marques G, Matos CC, Barros AIRNA, Nunes FM (2011) Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem 126:91–96. https://doi.org/10.1016/j.foodchem.2010.10.082 DOI

Mirończuk-Chodakowska I, Socha K, Zujko ME, Terlokowska KM, Borawska MH, Witkowska AM (2019) Copper, manganese, selenium, and zinc in wild-growing edible mushrooms from the eastern territory of “Green Lungs of Poland”: nutritional and toxicological implications. Int J Environ Res Public Health 16:3614. https://doi.org/10.3390/ijerph16193614 PubMed DOI PMC

Jorhem L, Sundström B (1995) Levels of some trace elements in edible fungi. Zeitschrift fur Lebensmittel-Untersuchung und Forschung 201:311–316. https://doi.org/10.1007/FB01192723 PubMed DOI

Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health, Part C 26:256–299. https://doi.org/10.1080/10590500802350086 DOI

Rasalanavho M, Moodley R, Jonnalagadda SB (2020) Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem 319:126596. https://doi.org/10.1016/j.foodchem.2020.126596 PubMed DOI

Leonhardt T, Borovička J, Sácký J, Šantrůček J, Kamenlík J, Kotrba P (2019) Zn overaccumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere 225:618–626. https://doi.org/10.1016/j.chemosphere.2019.03.062 PubMed DOI

Kojta AK, Falandysz J (2016) Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius. Food Chem 200:206–214. https://doi.org/10.1016/j.gexplo.2012.08.004 PubMed DOI

Lavola A, Aphalo PJ, Lehto T (2011) Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 21:155–165. https://doi.org/10.1007/s00572-010-0321-7 PubMed DOI

Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Res 111:3–49. https://doi.org/10.1016/mycres.2006.12.001 DOI

Landweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilized nutrients from minerals. TRENDS Ecology Evolution 16:248–254. https://doi.org/10.1016/S0169-5347(01)02122-X DOI

Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Magaz 67:1127–1155. https://doi.org/10.1180/0024641036760154 DOI

Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. https://doi.org/10.1016/j.fbr.2014.05.001 DOI

Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366. https://doi.org/10.1080/01490450490462066 DOI

Dusengemungu L, Kasali G, Gwanama C, Mubemba B (2021) Overview of fungal bioleaching of metals. Environ Advance 5:100083. https://doi.org/10.1016/j.envadv.2021.100083 DOI

Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799. https://doi.org/10.1016/0045-6535(88)90258-5 DOI

Jarzyńska G, Falandysz J (2012) Trace element profile of Slate Bolete (Leccinum duriusculum) mushroom and associated upper soil horizon. J Geochem Explor 121:69–75. https://doi.org/10.1016/j.gexplo.2012.07.001 DOI

Ivanić M, Fiket Ž, Medunić G, Furdek Turk M, Marović G, Senčar J, Kniewald G (2019) Multi-elemental composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere 215:668–677. https://doi.org/10.1016/j.chemosphere.2018.10.108 PubMed DOI

Vukojević V, Đurđić S, Stefanović S, Trifković J, Čakmak D, Perović V, Mutić J (2019) Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer. Environ Sci Pollut Res 26:5422–5434. https://doi.org/10.1007/s11356-018-3982-y DOI

Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazardous Mater 280:79–88. https://doi.org/10.1016/j.hazmat.2014.07.050 DOI

Dhir RK, de Brito J, Ghataora GS, Lye CQ (2018) Use of glass cullet in geotechnical applications. In: Lye CQ (ed) RK Dhir, J de Brito GS Ghataora. Woodhead Publishing Series in Civil and Stricture Engineering, Woodhead Publishing, Sustainable construction materials, pp 257–296

Borovička J, Mihaljevič M, Gryndler M, Kubrová J, Žigová A, Hršelová A, Řanda Z (2014) Lead isotopic signatures of saprotrophic macrofungi of various origins: tracing for lead sources and possible applications in geomycology. Appl Geochem 43:114–120. https://doi.org/10.1016/j.apgeochem.2014.02.012 DOI

Muszyńska B, Rojowski J, Łazarz M, Kała K, Dobosz K, Opoka W (2018) The accumulation and release of Cd and Pb from edible mushrooms and their biomass. Pol J Environ Stud 27:223–230. https://doi.org/10.15244/pjoes/74898 DOI

Kautmanová I, Brachtýr O, Gbúrová Štubňová E, Szabóová D, Šottník P, Lalinská-Voleková B (2021) Potentially toxic elements in macromycetes and plants from areas affected by antimony mining. Biologia 76:2133–2159. https://doi.org/10.10007/s11756-021-00788-9 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...