Accumulation and within-mushroom distribution of elements in red cracking bolete (Xerocomellus chrysenteron) collected over the extended period from compositionally contrasting substrates
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37673806
PubMed Central
PMC10482781
DOI
10.1007/s10661-023-11786-6
PII: 10.1007/s10661-023-11786-6
Knihovny.cz E-zdroje
- Klíčová slova
- Bedrock, Mushroom, Soil, Trace elements, Translocation, Uptake,
- MeSH
- Agaricales * MeSH
- Basidiomycota * MeSH
- kadmium MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
We conducted a study of elemental compositions of Xerocomellus chrysenteron samples accompanied by samples of related substrate soils. All samples were collected during the harvesting seasons 2021 and 2022 from three forested sites almost unpolluted by recent human activities and underlain by contrasting bedrock (granite, amphibolite, and serpentinite). Elements such as Ag, Cd, K, P, Rb, S, Se, and Zn were the main elements enriched in the mushroom's fruiting bodies relative to the substrate. Concentrations of most elements in mushrooms were not site-dependent, with only Ag, As, Rb, and Se concentrations significantly depending on the bedrock composition. Some elements analyzed in mushrooms displayed temporal features, but such features were not systematic and varied for each element. Most analyzed elements were distributed unevenly within the mushroom's fruiting bodies, with apical parts generally enriched in mobile elements. Mushrooms influenced concentrations of Ag, Cd, K, and Rb and a few other elements in the substrate via uptake, but such influence was very limited and can be responsible for only 2.5-11.5% of total depletion of the affected substrate in the named elements.
Zobrazit více v PubMed
Andronikov AV, Andronikova IE, Sebek O. First data on trace element and isotope compositions of a Xerocomus subtomentosus mushroom from western Czech Republic. Environmental Science and Pollution Research. 2022;29:9369–9374. PubMed
Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M, Vitkova H, Antalova E. Elemental and Cu-Zn isotope compositions of the two bolete mushrooms grown on contrasting substrates. Applied Geochemistry. 2023;150:105594. doi: 10.1016/j.apgeochem.2023.105594. DOI
Andronikov AV, Novak M, Kram P, Sebek O, Andronikova IE, Efremenko NA, Borodulina GS, Subetto DA, Stepanova M, Antalova E, Levichev MA, Zobkova MV, Chesalina GL. Behaviour of Cr in runoff from two catchments underlain by felsic bedrock. Hydrological Sciences Journal. 2020;65:2765–2782.
Antonín V, Hagara L, Baier J. Otto’s great atlas of the mushrooms. Otto Publishing House; 2019. p. 432.
Arnott HJ. Calcium oxalate in fungi. In: Khan SR, editor. Calcium oxalate in biological systems. CRC Press; 1995. pp. 73–111.
Borovička J, Braeuer S, Sácký J, Karmeník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Science of the Total Environment. 2019;648:1570–1581. PubMed
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W. A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. Science of the Total Environment. 2022;826:154227. PubMed
Borovička J, Konvalinková T, Žigová A, Ďurišová J, Gryndler M, Hršelová H, Kameník J, Leonhardt T, Sácký J. Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. Science of the Total Environment. 2019;694:133679. PubMed
Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W. Is arsenic responsible for the toxicity of the hyperaccumulating mushroom Sarcosphaera coronaria? Science of the Total Environment. 2020;736:e139524. PubMed
Brzezicha-Cirocka J, Mędyk M, Falandysz J, Szefer P. Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland. Environmental Science and Pollution Research. 2016;23:25517–25522. PubMed PMC
Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environmental Science and Pollution Research. 2011;18:890–896. PubMed
Chojnacka A, Jarzyńska G, Drewnowska M, Nnorom IC, Falandysz J. Mercury in Yellow-cracking Boletes Xerocomus subtomentosus mushrooms and soils from spatially diverse sites: Assessment of bioconcentration potential by species and human intake. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering. 2012;47:2094–3011. PubMed
Chojnacka A, Jarzyńska G, Lewandowska M, Nnorom IC, Falandysz J. Multivariate analysis of minerals in Yellow-cracking Bolete (Xerocomus subtomentosus) collected at one site over three years. Fresenius Environmental Bulletin. 2013;22:2707–2712.
Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chemistry. 2006;98:277–284.
Collin-Hansen C, Andersen RA, Steinnes E. Damage of DNA and lipids in Boletus edulis exposed to heavy metals. Mycological Research. 2005;109:1386–1396. PubMed
Damodaran D, Vidya Shetty K, Raj Mohan B. Uptake of certain heavy metals from contaminated soil by mushroom – Galerina vittiformis. Ecotoxicology and Environmental Safety. 2014;104:414–422. PubMed
Dannhaus N, Wittmann H, Krám P, Christl M, von Blankenburg F. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios. Geochimica et Cosmochimica Acta. 2018;222:618–641.
Dhir RK, de Brito J, Ghataora GS, Lye CQ. Use of glass cullet in geotechnical applications. In: Dhir RK, de Brito J, Ghataora GS, Lye CQ, editors. Sustainable construction materials. Woodhead Publishing Series in Civil and Stricture Engineering, Woodhead Publishing; 2018. pp. 257–296.
Dryżałowska A, Falandysz J. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distant locations: Levels, intake and safety. Ecotoxicology and Environmental Safety. 2014;107:97–102. PubMed
Đurđić S, Stanković V, Ražić S, Mutić J. Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer – soil. Environmental Science and Pollution Research. 2021;28:59003–59014. PubMed
Dusengemungu L, Kasali G, Gwanama C, Mubemba B. Overview of fungal bioleaching of metals. Environmental Advances. 2021;5:100083.
Ediriweera AN, Karunarathna SC, Yapa PN, Schaefer DA, Ranasinghe AK, Suwannarach N, Xu J. Ectomycorrhizal mushrooms as a natural bio-indicator for assessment of heavy metal pollution. Agronomy. 2022;12:1041. doi: 10.3390/agronomy12051041. DOI
Falandysz J. Selenium in edible mushrooms. Journal of Environmental Science and Health, Part C. 2008;26:256–299. PubMed
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms; health benefits and risks. Applied Microbiology and Biotechnology. 2013;97:477–501. PubMed PMC
Falandysz J, Drewnowska M, Chudzińska M, Barałkiewicz D. Accumulation and distribution of metallic elements and metalloids in edible Amanita fulva mushrooms. Ecotoxicology and Environmental Safety. 2017;137:265–271. PubMed
Fomina MA, Alexander IJ, Hillier S, Gadd GM. Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal. 2004;21:351–366.
Gadd GM. Fungal production of citric and oxalic acids: Importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology. 1999;41:47–92. PubMed
Gadd GM. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research. 2007;111:3–49. PubMed
Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews. 2014;28:36–55.
Hruška J, Krám P. Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic) Hydrology and Earth System Science. 2003;7:525–539.
Huang L. Pedogenic ferromanganese nodules and their impacts on nutrient cycles and heavy metal sequestration. Earth-Science Reviews. 2022;232:104147.
Ingrao J, Belloni P, Santaroni GP. Mushrooms as biological monitors of trace element in the environment. Journal of Radioanalytical and Nuclear Chemistry. 1992;161:113–120.
Jarzyńska G, Chojnacka A, Dryżałowska A, Nnorom IC, Falandysz J. Concentrations and bioconcentration factors of minerals by Yellow-cracking Bolete (Xerocomus subtomentosus) mushroom collected in Noteć Forest, Poland. Journal of Food Science. 2012;77:H202–H206. PubMed
Jorhem L, Sundström B. Levels of some trace elements in edible fungi. Zeitschrift fur Lebensmittel-Untersuchung und Forshung. 1995;201:311–316. PubMed
Kalač P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry. 2009;113:9–16.
Kalač P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chemistry. 2010;122:2–15.
Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chemistry. 2000;69:273–281.
Kaspari M, Powers JS. Biogeochemistry and geographic ecology: Embracing all twenty five elements required to build organisms. The American Naturalist. 2016;188:S62–S73. PubMed
Knauerová M, Slavíček J, Urubová L. Atlas of the mushrooms (a guide to the Czech nature) Edika Publishing House; 2020. p. 152.
Kojta AK, Gucia M, Krasińska G, Saba M, Norom IC, Falandysz J. Mineral constituents of edible parasol (Macrolepiota procera) mushrooms and the underlying substrate from upland regions of Poland: Bioconcentration potential, intake benefits, and toxicological risk. Polish Journal of Environmental Studies. 2016;25:1–16.
Komárek M, Chrastný V, Štíchová J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environment International. 2007;33:677–684. PubMed
Kopáček J, Hejzlar J, Krám P, Oulehle P, Posch M. Effect of industrial dust on precipitation chemistry in the Czech Republic. Water Resources. 2016;103:30–37. PubMed
Krám P. Water balance and hydrologic patterns of the Lysina catchment, Slavkov Forest, 1990-2018. Geoscience Research Reports. 2019;52:45–52.
Krám P, Čuřík J, Veselovský F, Myška O, Hruška J, Štědrá V, Jarchovský T, Buss HL, Chuman T. Hydrochemical fluxes and bedrock chemistry in three contrasting catchments underlain by felsic, mafic and ultramafic rocks. Procedia Earth and Planetary Science. 2017;17:538–541.
Krám P, Hruška J, Shanley JB. Streamwater chemistry in three contrasting monolithologic catchments. Applied Geochemistry. 2012;27:1854–1863.
Krám P, Oulehle P, Hruška J, Veselovský F, Čuřík J, Myška O, Novák M, McDowell WH. Calcium and magnesium biochemistry in spruce catchment underlain by felsic, mafic and ultramafic rocks. E3S Web of Conferences. 2019;98:06007.
Landweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N. Linking plants to rocks: Ectomycorrhizal fungi mobilized nutrients from minerals. TRENDS Ecology Evolution. 2001;16:248–254. PubMed
Liu C, Massey MS, Latta DE, Xia Y, Li F, Gao T, Hua J. Fe(II)-induced transformation of iron minerals in soil ferromanganese nodules. Chemical Geology. 2021;559:119901.
Maestri E, Marmiroli M, Visioli G, Marmiroli N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany. 2010;68:1–13.
Malinowska E, Szefer P, Falandysz J. Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chemistry. 2004;84:405–416.
Mallikarjuna SE, Ranjini A, Haware DJ, Viyaialaksmi MR, Shashirekha MN, Rajarathnam S. Mineral composition of four edible mushrooms. Journal of Chemistry. 2013;2013:1–5.
Štědrá V, Jarchovský T, Krám P. Lithium-rich granite in the Lysina-V1 borehole in the southern part of the Slavkov Forest, western Bohemia. Geoscience Research Reports. 2016;49:137–142.
Štědrá V, Krám P, Farkaš J. Petrology and whole-rock geochemistry of metabasites from borehole cores in the Na Zeleném and Pluhův Bor catchments in the Slavkov Forest, western Bohemia. Geoscience Research Reports. 2015;48:103–108.
Šutara J. Xerocomus s.l. in the light of the present knowledge. Czech Mycology. 2008;60:29–62.
Svoboda L, Chrastný V. Levels of eight trace elements in edible mushrooms from a rural area. Food Additives and Contaminants: Part A. 2008;25:51–58. PubMed
Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chemistry. 2006;96:580–585.
Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecological Chemistry and Engineering S. 2018;25:557–568.
Tlalka M, Bebber D, Darrah PR, Watkinsom SC. Chapter 3 Mycelial network: Nutrient uptake, translocation and role in ecosystems. British Mycological Society Symposia Series. 2008;28:43–62.
Walenta, M., Braeuer, S., & Goessler, W. (2023). Arsenic speciation of commonly eaten mushrooms from Central Europe. Environmental Chemistry. 10.1071/EN22069
Walker GM, White NA. Introduction to fungal physiology. In: Kavangh K, editor. Fungi: Biology and Applications. John Wiley and Sons Publishing House; 2018. pp. 2–35.
Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wzdmańska D, Bielawski L, Wang J, Falandysz J. Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research. 2010;5:3050–3055.
Zocher A-L, Kraemer D, Merschel G, Bau M. Distribution of major and trace elements in the bolete mushroom Suillius luteus and the bioavailability of rare earth elements. Chemical Geology. 2018;483:491–500.
Zsigmond AR, Kántor I, May Y, Urák I, Héberger K. Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania) Chemosphere. 2020;238:124566. doi: 10.1016/j.chemosphere.2019.124566. PubMed DOI