Mineral composition variation in Boletales mushrooms-indication of soil properties and taxonomic influence

. 2024 Jun ; 31 (28) : 41137-41154. [epub] 20240607

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38849615
Odkazy

PubMed 38849615
PubMed Central PMC11189970
DOI 10.1007/s11356-024-33916-4
PII: 10.1007/s11356-024-33916-4
Knihovny.cz E-zdroje

The efficiency of element accumulation depends on numerous factors, where the physico-chemical characteristics of the soil seem to be very important, and the role of taxonomic rank in the accumulation of elements by mushrooms seems to be important. The aim of the study was to compare the mineral composition of 7 species belonging to Leccinum and Suillus genera, collected between 2019 and 2021 from localizations in the west-central part of Poland. The research aimed to indicate the role of selected soil parameters in stimulating/inhibiting the accumulation of elements by selected Boletales mushroom species and to answer the question about the role of species belonging to the genus as an indicator determining the specific mineral composition of fruiting bodies. Soil pH and other soil properties (granulometric composition, organic carbon, degree of organic matter decomposition) may significantly affect mushrooms' mineral composition. Mushroom species belonging to Leccinum genus exhibited the higher amount of essential major and trace elements than species of Suillus genus). It suggests that the affiliation of the studied mushroom species to a specific genus may affect their mineral composition, and the physicochemical properties of the soil may be responsible for the lack of a clear division in the efficiency of element(s) accumulation. Selected species contain high amounts of K, Cu, Fe, and Zn, while others, such as selected Suillus gravellei fruiting bodies, also contain As and Cd. The results described serve as an introduction to a broader scientific discussion and require many further studies to confirm the role of taxonomic ranks and the influence of soil characteristics on the accumulation of elements by fruiting bodies.

Zobrazit více v PubMed

Alonso J, García MA, Pérez-López MMJ. The concentration and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol. 2003;44:180–188. doi: 10.1007/s00244-002-2051-0. PubMed DOI

Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol Environ Saf. 2012;78:184–194. doi: 10.1016/j.ecoenv.2011.11.018. PubMed DOI

Andronikov AV, Andronikova IE, Sebek O, Martinkova E, Stepanova M. Accumulation and within-mushroom distribution of elements in red crecking bolete (Xeroccomellus chrysenteron) collected over the extended period from compositionally contrasting substrates. Environ Monit Assess. 2023;195:1157. doi: 10.1007/s10661-023-11786-6. PubMed DOI PMC

Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, Bouziane H, López-Castillo JG, Palma MF, Barbero G. Exposure to essential and toxic elements via consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae mushrooms from southern Spain and Northern Morocco. J Fungi. 2022;8:545. doi: 10.3390/jof8050545. PubMed DOI PMC

Binder M, Hibbett D. Molecular systematics and biological diversification of Boletales. Mycologia. 2006;98:971–981. doi: 10.1080/15572536.2006.11832626. PubMed DOI

Brzezicha-Cirocka J, Medyk M, Falandysz J, Szefer P. Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland. Environ Sci Pollut Res Int. 2016;23:21517–21522. doi: 10.1007/s11356-016-7371-0. PubMed DOI PMC

Cui Y-J, Zhu Y-G, Zhai R-H, Chen D-Y, Huang Y-Z, Qiu Y, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int. 2004;30:785–791. doi: 10.1016/j.envint.2004.01.003. PubMed DOI

Dimitrijevic MV, Mitic VD, Cvetkovic JS, Stankov Jovanovic VP, Mutic JJ, Nikolic Mandic SD. Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Europ Food Res Technol. 2016;242:1–10. doi: 10.1007/s00217-015-2512-0. DOI

Dowlati M, Sobhi HR, Esrafili A, FarzadKia M, Yeganeh M. Heavy metals content in edible mushrooms: a systematic review meta-analysis and health risk assessment. Trend Food Sci Technol. 2021;109:527–535. doi: 10.1016/j.tifs.2021.01.064. DOI

EC (2008) COMMISSION REGULATION (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs

EFSA EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for energy. EFSA J. 2013;11:3005.

EFSA Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. Panel of Contaminants in the Food Chain (CONTAM) EFSA J. 2015;13:4002.

EFSA Dietary reference values for nutrients. Summary Report EFSA Supporting Publication. 2017;2017:e15121.

Falandysz J, Zhang J, Wang Y, Krasińska G, Kojta A, Saba M, Shen T, Li T, Liu H. Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Sci Total Environ. 2015;537:470–478. doi: 10.1016/j.scitotenv.2015.07.159. PubMed DOI

Farid A, Bessette AE, Bessette AR, Bolin JA, Kudzma LV, Franck AR, Garey JR. Investigations in the boletes (Boletaceae) of southeastern USA: four novel species, and three novel combinations. Mycosphere. 2021;12:1038–1076. doi: 10.5943/mycosphere/12/1/12. DOI

Floudas D. Evolution of lignin decomposition systems in fungi. Adv Bot Res. 2021;99:27–76. doi: 10.1016/bs.abr.2021.05.003. DOI

Gałgowska M, Pietrzak-Fiećko R. Mineral composition of three popular wild mushrooms from Poland. Molecules. 2020;25:3588. doi: 10.3390/molecules25163588. PubMed DOI PMC

Gałgowska M, Pietrzak-Fiećko R. Cadmium and lead content in selected fungi from Poland and their edible safety assessment. Molecules. 2021;26:7289. doi: 10.3390/molecules26237289. PubMed DOI PMC

Geraldi M (2021) Boletales. In: Zaragoza Ó, Casadevall A (eds) Encyclopedia of mycology. Elsevier Inc. 2:329–360

Gast CH, Jansen E, Bierling J, Haanstra L. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere. 1988;17:789–799. doi: 10.1016/0045-6535(88)90258-5. DOI

Golubkina NA, Mironov VE. Elements composition of mushrooms in contrasting anthropogenic loading. Geochem Int. 2018;56:1263–1275. doi: 10.1134/S0016702918100087. DOI

Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosyst 10:999–1018. 10.1007/s10021-007-9073-4

IUSS Working Group WRB (2022) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria

Jarzyńska G, Falandysz J. Trace elements profile of Slate Bolete (Leccinum duriusculum) mushroom and associated upper soil horizon. J Geochem Exp. 2012;121:69–75. doi: 10.1016/j.gexplo.2012.07.001. DOI

JECFA (2012) Joint FAO/WHO Expert Committee on food additives. Meeting (74th: 2011: Rome, Italy) & World Health Organization. Safety evaluation of certain food additives and contaminants: prepared by the Seventy fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). World Health Organization

JECFA (2021) https://apps.who.int/food-additivescontaminants-jecfa-database/search.aspx?fcc=2/. Accessed  25 May 2024

Kabata-Pendias A. Soil-plant transfer of trace elements-an environmental issue. Geoderma. 2004;122:143–149. doi: 10.1016/j.geoderma.2004.01.004. DOI

Kabata-Pendias A. Trace elements in soils and plants. 4. Boca Raton: CRC; 2011.

Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–281. doi: 10.1016/S0308-8146(99)00264-2. DOI

Kalač P (2019) Mineral composition and radioactivity of edible mushrooms. Academic Press / Elsevier

Kirk M, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. Tenth editions, CABI Europe – UK, Wallingford: p. 771

Kokkoris V, Massas I, Polemis E, Koutrotsios G, Zervakis GI. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece) Sci Total Environ. 2019;685:280–296. doi: 10.1016/j.scitotenv.2019.05.447. PubMed DOI

Krejsa J, Šíma J, Kobera M, Šeda M, Svoboda L. Detrimental and essential elements in fruiting bodies of mushrooms with ecological relationship to birch (Betula sp.) collected in the Bohemian Forest, the Czech Republic. Environ Sci Pollut Res Int. 2021;28:67852–67862. doi: 10.1007/s11356-021-13762-4. PubMed DOI

Kuziemska B, Wysokiński A, Jaremko D, Pakuła K, Popek M, Kożuchowska M. The content of copper, zinc, and nickel in the selected species of edible mushrooms. Env Prot Nat Res. 2019;30:7–10. doi: 10.2478/oszn-2019-0002. DOI

Leung AOW, Duzgoren-Aydin NS, Cheung KC, Wong MH. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol. 2008;42:2674–2680. doi: 10.1021/es071873x. PubMed DOI

Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2014;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI

Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015;188:294–300. doi: 10.1016/j.foodchem.2015.05.010. PubMed DOI

Malinowski R, Sotek Z, Stasińska M, Malinowska K, Radke P, Malinowska A. Bioaccumulation of macronutrients in edible mushrooms in various habitat conditions of NW Poland—role in the human diet. Int J Environ Res Public Health. 2021;18:8881. doi: 10.3390/ijerph18168881. PubMed DOI PMC

Mędyk M, Grembecka M, Brzezicha-Cirocka J, Falandysz J. Bio- and toxic elements in mushrooms from the city of Umeå and outskirts, Sweden. J Environ Sci Health B. 2017;52:577–583. doi: 10.1080/03601234.2017.1318638. PubMed DOI

Mirończuk-Chodakowska I, Socha K, Witkowska AM, Zujko ME, Borawska MH (2013) Cadmium and lead in wild edible mushrooms from the eastern region of Poland’s ‘Green Lungs’. Pol J Environ Stud 22:1759–1765

Mleczek M, Szostek M, Siwulski M, Budka A, Kalač P, Budzyńska S, Kuczyńska-Kippen N, Niedzielski P. Road traffic and abiotic parameters of underlying soil determine the mineral composition and nutritive value of the mushroom Macrolepiota procera (Scop.) Singer. Chemosphere. 2022;303:135213. doi: 10.1016/j.chemosphere.2022.135213. PubMed DOI

Mleczek M, Siwulski M, Mikołajczak P, Goliński P, Gąsecka M, Sobieralski K, Szymańczyk M. Bioaccumulation of elements in three selected mushroom species from southwest Poland. J Environ Sci Health B. 2015;50:207–216. doi: 10.1080/03601234.2015.982427. PubMed DOI

Mleczek M, Siwulski M, Stuper-Szablewska K, Rissmann I, Sobieralski K, Goliński P. Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. J Environ Sci Health B. 2013;48:69–81. doi: 10.1080/03601234.2012.716733. PubMed DOI

Money NP (2015) Fungal diversity. In: Watkinson SC, Boddy L, Money NP (eds) The Fungi, 3rd edn. Elsevier Ltd, pp 1–36

Murati E, Hristovski S, Karadelev M. Correlation between the content of seven heavy metals in certain species of fungi and their concentration in soils near Tepp Oslomej-Kichevo, North Macedonia. Int J Food Technol Nutr. 2022;5:33–39.

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: methods of soil analysis: part 3: chemical methods; soil science society of america (SSSA), vol 5. Madison, WI, USA, pp 961–1010

Nevedrov NP, Protsenko EP, Balabina NA, Balabina IP (2020) Accumulation of heavy metals by fungi in the cities of central black earth region. IOP Conf Series Earth Environ Sci 534:012005. IOP Publishing 10.1088/1755-1315/534/1/012005

Pająk M, Gąsiorek M, Jasik M, Halecki W, Otremba K, Pietrzykowski M (2020) Risk assessment of potential food chain threats from edible wild mushrooms collected in forest ecosystems with heavy metal pollution in upper Silesia, Poland. Forests 11:1240. 10.3390/f11121240

Peng L, Huang J, Yuan L. Biological mobilization of potassium from soil by thirteen Suillus species and ectomycorrhizal Pinus massoniana Lamb. seedlings. Europ J Soil Sci. 2019;71:740–751. doi: 10.1111/ejss.12898. DOI

Rizal LM, Hyde KD, Chukeatirote E, Chamyuang S. Proximate analysis and mineral constituents of Macrolepiota dolichaula and soils beneath its fruiting bodies. Mycosphere. 2015;6:414–420. doi: 10.5943/mycosphere/6/4/3. DOI

Rousk J, Brookes PC, Bååth E. Contrasting soil pH effect on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appy Environ Microbiol. 2009;75:1589–1596. doi: 10.1128/AEM.02775-08. PubMed DOI PMC

Sarikurkcu C, Popović-Djordjević J, Solak MH. Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicol Environ Saf. 2020;190:110058. doi: 10.1016/j.ecoenv.2019.110058. PubMed DOI

Sato H, Hattori T. New species of Boletellus section Boletellus (Boletaceae, Boletales) from Japan, B. aurocontextus sp. nov. and B. areolatus sp. nov. PLoS ONE. 2015;10:e0128184. doi: 10.1371/journal.pone.0128184. PubMed DOI PMC

Širić I, Kos I, Bedekovic D, Kaić A, Kasap A. Heavy metals in edible mushroom Boletus reticulatus Schaeff. collected from Zrin mountain, Croatia. Periodicum Biologorum. 2014;116:319–322.

Sun L, Chang W, Bao C, Zhuang Y. Metal contents, bioaccumulation, and health risk assessment in wild edible Boletaceae mushrooms. J Food Sci. 2017;82:1500–1508. doi: 10.1111/1750-3841.13698. PubMed DOI

Sun YJ, Yu PY, Chen JZ, Li SM, Jiang LJ (2020) Effects of Slippery Jack (Suillus luteus) on the heavy metal accumulation and soil properties of Masson's pine (Pinus massoniana Lamb) in a mining area of China. Appl Ecol Environ Res 18:3741–3755. 10.15666/aeer/1802_37413755

Świsłowski P, Dołhańczuk-Śródka A, Rajfur M. Bibliometric analysis of European publications between 2001 and 2016 on concentrations of selected elements in mushrooms. Environ Sci Pollut Res Int. 2020;27:22235–22250. doi: 10.1007/s11356-020-08693-5. PubMed DOI PMC

Turkekul I, Elmastas M, Tüzen M. Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem. 2004;84:389–392. doi: 10.1016/S0308-8146(03)00245-0. DOI

USEPA (2012) Integrated risk information system of the US environmental protection agency, http://www.epa.gov/iris/. Accessed 24 May 2024

Walker GM, White NA (2018) Introduction to fungal physiology. Kevin Kavanagh (ed) Fungi: biology and applications, 3rd edn. John Wiley & Sons, Inc

Wang X-M, Zhang J, Li T, Wang Y-Z, Liu H-G. Content and bioaccumulation of nine mineral elements in ten mushroom species of the genus Boletus. J Anal Method Chem. 2015;2015:165412. doi: 10.1155/2015/165412. PubMed DOI PMC

Watkinson SC, Eastwood DC. Serpula lacrymans, Wood and Buildings. Adv Appl Microbiol. 2012;78:121–149. doi: 10.1016/B978-0-12-394805-2.00005-1. PubMed DOI

Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wydmańska D, Bielawski L, Wang J, Falandysz J. Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. Afric J of Agric Res. 2010;5:3050–3055.

Wu G, Feng B, Xu J, Zhu X-T, Li Y-C, Zeng N-K, Hosen DI, Yang ZL. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity. 2014;69:93–115. doi: 10.1007/s13225-014-0283-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...