Bibliometric analysis of European publications between 2001 and 2016 on concentrations of selected elements in mushrooms
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32329001
PubMed Central
PMC7293692
DOI
10.1007/s11356-020-08693-5
PII: 10.1007/s11356-020-08693-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bibliometric analysis, Heavy metals, Mushrooms, Review,
- MeSH
- Agaricales * MeSH
- bibliometrie MeSH
- látky znečišťující půdu analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- těžké kovy analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Polsko MeSH
- Španělsko MeSH
- Turecko MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- těžké kovy MeSH
This article presents a bibliometric study of 200 European publications released between 2001 and 2016, about the contamination of mushrooms by selected elements. The analysis includes figures on the type of analyte, its concentration, the species of fungi, and its country of origin. In the literature review, 492 species of mushrooms (wild-growing and cultured) found in 26 European countries and their concentration of 74 associated elements were analysed. The papers, which dealt mainly with the heavy metal (Cd, Cu, Fe, Pb, and Zn) concentrations of mushrooms, primarily came from Turkey, Poland, Spain, and the Czech Republic. More than 50% of the publications provided data about edible mushrooms. The results of the bibliometric analysis showed that over the 16 years, European research on fungal contamination by selected analytes has not lessened in popularity and is ongoing. Many of the studies underlined the need to assess the risk to human health arising from the consumption of contaminated mushrooms taken from various habitats. These results were the effect of, among other things, the strong interest in studies carried out on edible species, in which concentrations of mainly heavy metals that are dangerous to health and are marked were indicated (Cd, Pb, and Hg).
Zobrazit více v PubMed
Adriaensen K, Van Der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV. A zinc-adapted fungus protects pines from zinc stress. New Phytol. 2003;161:549–555. doi: 10.1046/j.1469-8137.2003.00941.x. PubMed DOI
Alonso J, García MA, Pérez-López M, Melgar MJ. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Con Tox. 2003;44:180–188. doi: 10.1007/s00244-002-2051-0. PubMed DOI
Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Safe. 2012;78:184–194. doi: 10.1016/j.ecoenv.2011.11.018. PubMed DOI
Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH. Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea Region of Turkey. Food Nutr Sci. 2011;02:53–59. doi: 10.4236/fns.2011.22007. DOI
Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbio Lett. 2002;206:69–74. doi: 10.1016/S0378-1097(01)00519-5. PubMed DOI
Baumann N, Arnold T, Haferburg G. Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut R. 2014;21:6921–6929. doi: 10.1007/s11356-013-1913-5. PubMed DOI
Benbrahim M, Denaix L, Thomas A-L, Balet J, Carnus JM. Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut. 2006;144:847–854. doi: 10.1016/j.envpol.2006.02.014. PubMed DOI
Blanuša M, Kučak A, Varnai VM, Sarić MM. Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int. 2001;84:1964–1971. doi: 10.1093/jaoac/84.6.1964. PubMed DOI
Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Non-wood Forest Products. FAO, Rome
Borovička J, Řanda Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog. 2007;6:249–259. doi: 10.1007/s11557-007-0544-y. DOI
Borovička J, Řanda Z, Jelínek E. Gold content of ectomycorrhizal and saprobic macrofungi from non-auriferous and unpolluted areas. Mycol Res. 2005;109:951–955. doi: 10.1017/S095375620500328X. PubMed DOI
Borovička J, Řanda Z, Jelínek E. Antimony content of macrofungi from clean and polluted areas. Chemosphere. 2006;64:1837–1844. doi: 10.1016/j.chemosphere.2006.01.060. PubMed DOI
Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE. Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res. 2007;111:1339–1344. doi: 10.1016/j.mycres.2007.08.015. PubMed DOI
Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Stijve T, Dunn CE. Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ. 2010;408:2733–2744. doi: 10.1016/j.scitotenv.2010.02.031. PubMed DOI
Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, Rohošková M, Řanda Z. Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem. 2010;42:83–91. doi: 10.1016/j.soilbio.2009.10.003. DOI
Borovička J, Kubrová J, Rohovec J, Řanda Z, Dunn CE. Uranium, thorium and rare earth elements in macrofungi: What are the genuine concentrations? BioMetals. 2011;24:837–845. doi: 10.1007/s10534-011-9435-4. PubMed DOI
Borovička J, Mihaljevič M, Gryndler M, Kubrová J, Žigová A, Hršelová H, Řanda Z. Lead isotopic signatures of saprotrophic macrofungi of various origins: tracing for lead sources and possible applications in geomycology. Appl Geochem. 2014;43:114–120. doi: 10.1016/j.apgeochem.2014.02.012. DOI
Brzostowski A, Bielawski L, Orlikowska A, Plichta S, Falandysz J (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chem Anal (Warsaw) 54:1297 http://beta.chem.uw.edu.pl/chemanal/PDFs/2009/CHAN2009V54P01297.pdf. Accessed 24 Aug 2019
Brzostowski A, Falandysz J, Jarzyńska G, Zhang D. Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. J Environ Sci Heal A. 2011;46:378–393. doi: 10.1080/10934529.2011.542387. PubMed DOI
Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut R. 2011;18:890–896. doi: 10.1007/s11356-011-0446-z. PubMed DOI
Campos JA, Tejera NA. Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res. 2011;143:540–554. doi: 10.1007/s12011-010-8853-4. PubMed DOI
Campos JA, Tejera NA, Sánchez CJ. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. BioMetals. 2009;22:835–841. doi: 10.1007/s10534-009-9230-7. PubMed DOI
Carvalho ML, Pimentel AC, Fernandes B. Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal Sci. 2005;21:747–750. doi: 10.2116/analsci.21.747. PubMed DOI
Çayir A, Coşkun M, Coşkun M. The heavy metal content of wild edible mushroom samples collected in canakkale province, Turkey. Biol Trace Elem Res. 2010;134:212–219. doi: 10.1007/s12011-009-8464-0. PubMed DOI
Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut. 2016;218:176–185. doi: 10.1016/j.envpol.2016.08.009. PubMed DOI
Chang C, Ho Y. Bibliometric analysis of financial crisis research. Afr J Bus Manage. 2010;4:3898–3910.
Chudzyński K, Falandysz J. Multivariate analysis of elements of Larch Bolete (Suillus grevillei) mushroom. Chemosphere. 2008;73:1230–1239. doi: 10.1016/j.chemosphere.2008.07.055. PubMed DOI
Chudzyński K, Bielawski L, Falandysz J. Mercury bio-concentration potential of Larch Bolete, Suillus grevillei, mushroom. Bull Environ Contam Toxicol. 2009;83:275–279. doi: 10.1007/s00128-009-9723-7. PubMed DOI
Chudzyński K, Jarzyńska G, Stefańska A, Falandysz J. Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chem. 2011;125:986–990. doi: 10.1016/j.foodchem.2010.09.102. DOI
Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006;98:277–284. doi: 10.1016/j.foodchem.2005.05.068. DOI
Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steinnes E. Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geochemistry: Exploration, Environment, Analysis. 2002;2:121–130. doi: 10.1144/1467-787302-015. DOI
Collin-Hansen C, Andersen RA, Steinnes E. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. Journal de Physique IV France. 2003;107:311–314. doi: 10.1051/jp4:20030304. DOI
Collin-Hansen C, Andersen RA, Steinnes E. Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res. 2005;109:1386–1396. doi: 10.1017/S0953756205004016. PubMed DOI
Collin-Hansen C, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia. 2005;97:000–000. doi: 10.3852/mycologia.97.5.973. PubMed DOI
Colpaert JV, Mulle LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549-559. https:// 10.1111/j.1469-8137.2004.01037.x
Cordeiro F, Llorente-Mirandes T, López-Sánchez JF, Rubio R, Sánchez Agullo A, Raber G, Scharf H, Vélez D, Deversa V, Fiamegos Y, Emteborg H, Seghers J, Robouch P, de la Calle MB. Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Addit Contam A. 2015;32:54–67. doi: 10.1080/19440049.2014.966336. PubMed DOI PMC
Costa-Silva F, Marques G, Matos CC, Barros A, Nunes FM. Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem. 2011;126:91–96. doi: 10.1016/j.foodchem.2010.10.082. DOI
Cremades O, Diaz-Herrero MM, Carbonero-Aguilar P, Gutierrez-Gil JF, Fontiveros E, Rodríguez-Morgado B, Parrado J, Bautista J. Preparation and characterisation of selenium-enriched mushroom aqueous enzymatic extracts (MAEE) obtained from the white button mushroom (Agaricus bisporus) Food Chem. 2012;133:1538–1543. doi: 10.1016/j.foodchem.2012.02.046. DOI
Cuny D, Van Haluwyn C, Pesch R. Biomonitoring of trace elements in air and soil compartments along the major motorway in France. Water Air Soil Poll. 2001;125:273–289. doi: 10.1023/A:1005278900969. DOI
Daillant O, Boilley D, Josset M, Hettwig B, Fischer HW. Evolution of radiocaesium contamination in mushrooms and influence of treatment after collection. J Radioanal Nucl Ch. 2013;297:437–441. doi: 10.1007/s10967-012-2411-9. DOI
de Freitas VG, Alves-Souza SN. A systematic literature review on big data for solar photovoltaic electricity generation forecasting. Sus Energy Technol Assess. 2019;31:54–63. doi: 10.1016/j.seta.2018.11.008. DOI
Dementyev DV, Zotina TA, Manukovsky NS, Kalacheva GS. Biosorption of 241Am from solution and its biochemical fractionation in the mycelium of macromycetes. Radiochemistry. 2015;57:661–665. doi: 10.1134/s1066362215060144. PubMed DOI
Dementyev DV, Zotina TA, Manukovsky NS, Kalacheva GS, Bolsunovsky AY. Biosorption of 241Am from aqueous solutions and its biochemical fractionation in Pleurotus ostreatus mycelium. Dokl Biochem Biophys. 2015;460:34–36. doi: 10.1134/s160767291501010x. PubMed DOI
Demirbaş A. Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem. 2001;75:453–457. doi: 10.1016/S0308-8146(01)00236-9. DOI
Demirbaş A. Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem. 2001;74:293–301. doi: 10.1016/S0308-8146(01)00155-8. DOI
Demirbaş A. Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem. 2002;78:89–93. doi: 10.1016/S0308-8146(01)00389-2. DOI
Dernovics M, Stefánka Z, Fodor P. Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem. 2002;372:473–480. doi: 10.1007/s00216-001-1215-5. PubMed DOI
Díaz Huerta V, Fernández Sánchez ML, Sanz-Medel A. Qualitative and quantitative speciation analysis of water soluble selenium in three edible wild mushrooms species by liquid chromatography using post-column isotope dilution ICP-MS. Anal Chim Acta. 2005;538:99–105. doi: 10.1016/j.aca.2005.02.033. DOI
Dimitrijevic MV, Mitic VD, Cvetkovic JS, Stankov Jovanovic VP, Mutic J, Nikolic Mandic SD. Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Eur Food Res Technol. 2016;242:1–10. doi: 10.1007/s00217-015-2512-0. DOI
Djingova R, Kovacheva P, Wagner G, Markert B. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ. 2003;308:235–246. doi: 10.1016/S0048-9697(02)00677-0. PubMed DOI
Drewnowska M, Nnorom I, Falandysz J. Mercury in the Grisette, Amanita vaginata Fr. and soil below the fruiting bodies. J Environ Sci Heal B. 2014;49:521–526. doi: 10.1080/03601234.2014.896677. PubMed DOI
Dryżałowska A, Falandysz J. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: levels, possible intake and safety. Ecotox Environ Safe. 2014;107:97–102. doi: 10.1016/j.ecoenv.2014.05.020. PubMed DOI
Duran C, Senturk HB, Elci L, Soylak M, Tufekci M. Simultaneous preconcentration of Co (II), Ni (II), Cu (II), and Cd (II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. J Hazard Mater. 2009;162:292–299. doi: 10.1016/j.jhazmat.2008.05.034. PubMed DOI
Elekes CC, Busuioc G, Dumitriu I (2009) Heavy metals concentration level in some wild growing species of Cortinarius genus. Annals. Food Science and Technology 10:473-477. http://www.afst.valahia.ro/images/documente/2009/1-ELEKES_BUSUIOC_DUMITRIU_EN.pdf. Accessed 24 Aug 2019
Ertugay N, Bayhan YK. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. J Hazard Mater. 2008;154:432–439. doi: 10.1016/j.jhazmat.2007.10.070. PubMed DOI
Ertugay N, Bayhan YK. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination. 2010;255:137–142. doi: 10.1016/j.desal.2010.01.002. DOI
EU (2008) Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Office J European Union 372008L173/6–9
Falandysz J. Mercury accumulation of three Lactarius mushroom species. Food Chem. 2017;214:96–101. doi: 10.1016/j.foodchem.2016.07.062. PubMed DOI
Falandysz J, Bielawski L. Mercury content of wild edible mushrooms collected near the town of Augustow. Pol J Environ Stud. 2001;10:67–71.
Falandysz J, Bielawski L. Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 2007;105:635–640. doi: 10.1016/j.foodchem.2007.04.024. DOI
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC
Falandysz J, Drewnowska M. Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: accumulation, loss in cooking and dietary intake. Ecotox Environ Safe. 2015;115:49–54. doi: 10.1016/j.ecoenv.2015.02.004. PubMed DOI
Falandysz J, Gucia M. Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera) Environ Geochem Health. 2008;30:121–125. doi: 10.1007/s10653-008-9133-5. PubMed DOI
Falandysz J, Gucia M, Frankowska A, Kawano M, Skwarzec B. Total mercury in wild mushrooms and underlying soil substrate from the city of Umeå and its surroundings, Sweden. B Environ Contam Tox. 2001;67:763–770. doi: 10.1007/s00128-001-0188-6. PubMed DOI
Falandysz J, Szymczak K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki S-I. ICP/MS and ICP/AES elemental analysis (38 elements) of efible wild mushrooms growing in Poland. Food Addit Contam. 2001;18:503–513. doi: 10.1080/02652030119625. PubMed DOI
Falandysz J, Lipka K, Gucia M, Kawano M, Strumnik K, Kannan K. Accuulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environ Int. 2002;28:421–427. doi: 10.1016/S0160-4120(02)00067-3. PubMed DOI
Falandysz J, Gucia M, Skwarzec B, Frankowska A, Klawikowska K. Total mercury in mushrooms and underlying soil substrate from the Borecka Forest, Northeastern Poland. Arch Environ Contam Toxicol. 2002;42:145–154. doi: 10.1007/s00244-001-0026-1. PubMed DOI
Falandysz J, Brzostowski A, Kawano M, Kannan K, Puzyn T, Lipka K. Cncentrations of mercury in wild growing higher fungi and underlying substrate near lake Wdzydze, Poland. Water Air Soil Poll. 2003;148:127–137. doi: 10.1023/A:1025422017868. DOI
Falandysz J, Kawano M, Świeczkowski A, Brzostowski A, Dadej M. Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chem. 2003;81:21–26. doi: 10.1016/S0308-8146(02)00344-8. DOI
Falandysz J, Frankowska A, Mazur A. Mercury and its bioconcentration factors in King Bolete (Boletus edulis) Bull. Fr. J Environ Sci Heal A. 2007;42:2089–2095. doi: 10.1080/10934520701627058. PubMed DOI
Falandysz J, Kunito T, Kubota R, Bielawski L, Frankowska A, Falandysz J, Tanabe S. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. J Environ Sci Heal A. 2008;43:1692–1699. doi: 10.1080/10934520802330206. PubMed DOI
Falandysz J, Sapkota A, Mędyk M, Feng X. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem. 2017;221:24–28. doi: 10.1016/j.foodchem.2016.10.047. PubMed DOI
Figueiredo E, Soares ME, Baptista P, Castro M, Bastos ML. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium (VI) in wild mushrooms and underlying soils. J Agr Food Chem. 2007;55:7192–7198. doi: 10.1021/jf0710027. PubMed DOI
Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem. 2005;37:851–866. doi: 10.1016/j.soilbio.2004.10.013. DOI
Frankowska A, Ziółkowska J, Bielawski L, Falandysz J. Profile and bioconcentration of minerals by King Bolete (boletus edulis) from the Płocka Dale in Poland. Food Addi Contam B. 2010;3:1–6. doi: 10.1080/19440040903505232. PubMed DOI
Frutos I, García-Delgado C, Gárate A, Eymar E. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Te. 2016;13:2713–2720. doi: 10.1007/s13762-016-1100-6. DOI
Gabriel J, Švec K, Kolihová D, Tlustoš P, Száková J. Translocation of mercury from substrate to fruit bodies of Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata on oat flakes. Ecotox Environ Safe. 2016;125:184–189. doi: 10.1016/j.ecoenv.2015.12.009. PubMed DOI
García MA, Alonso J, Melgar MJ. Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biot. 2005;80:325–330. doi: 10.1002/jctb.1203. DOI
García MA, Alonso J, Melgar MJ. Lead in edible mushrooms. Levels and bioaccumulation factors. J Hazard Mater. 2009;167:777–783. doi: 10.1016/j.jhazmat.2009.01.058. PubMed DOI
García MA, Alonso J, Melgar MJ. Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors. Food Chem Toxicol. 2013;58:249–254. doi: 10.1016/j.fct.2013.04.049. PubMed DOI
García MA, Alonso J, Melgar MJ. Radiocaesium activity concentrations in macrofungi from Galicia (NW Spain): influence of environmental and genetic factors. Ecotox Environ Safe. 2015;115:152–158. doi: 10.1016/j.ecoenv.2015.02.005. PubMed DOI
García-Delgado C, Jiménez-Ayuso N, Frutos I, Gárate A, Eymar E. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate. Environ Sci Pollut R. 2013;20:8690–8699. doi: 10.1007/s11356-013-1829-0. PubMed DOI
García-Delgado C, Yunta F, Eymar E. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: polycyclic aromatic hydrocarbons degradation and Pb availability. J Hazard Mater. 2015;300:281–288. doi: 10.1016/j.jhazmat.2015.07.008. PubMed DOI
Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009;113:1033–1036. doi: 10.1016/j.foodchem.2008.08.058. DOI
Gezer K, Kaygusuz O (2014) An assessment of the heavy metal content of various wild edible mushrooms in the Denizli Province, Turkey. J Environ Prot Ecol 15:425-432. https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjZhMjFjN2Q2MTYwNWE4MDQ. Accessed 24 Aug 2019
Giannaccini G, Betti L, Palego L, Mascia G, Schmid L, Lanza M, Mela A, Fabbrini L, Biondi L, Lucacchini A. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ Monit Assess. 2012;184:7579–7595. doi: 10.1007/s10661-012-2520-5. PubMed DOI
Gonzálvez A, Llorens A, Cervera ML, Armenta S, de la Guardia M. Non-chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry. Food Chem. 2009;115:360–364. doi: 10.1016/j.foodchem.2008.11.088. DOI
Gorbunova IA, Koutzenogii KP, Koval’skaya GA, Chankina OV, Savchenko TI. Elemental composition of mushrooms from Gorny Altai. Contemp Probl Ecol. 2009;2:46–50. doi: 10.1134/s1995425509010081. DOI
Gramss G, Voigt KD. Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. BiolTrace Elem Res. 2013;154:140–149. doi: 10.1007/s12011-013-9719-3. PubMed DOI
Gryndler M, Hršelová H, Soukupová L, Borovička J. Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. BioMetals. 2012;25:987–993. doi: 10.1007/s10534-012-9564-4. PubMed DOI
Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, Falandysz J. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res. 2012;19:416–431. doi: 10.1007/s11356-011-0574-5. PubMed DOI PMC
Guillén J, Baeza A, Ontalba MA, Míguez MP. 210Pb and stable lead content in fungi: its transfer from soil. Sci Total Environ. 2009;407:4320–4326. doi: 10.1016/j.scitotenv.2009.03.025. PubMed DOI
Gursoy N, Sarikurkcu C, Cengiz M, Solak MH. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol. 2009;47:2381–2388. doi: 10.1016/j.fct.2009.06.032. PubMed DOI
Gwynn JP, Nalbandyan A, Rudolfsen G. 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J Environ Radioactiv. 2013;116:34–41. doi: 10.1016/j.jenvrad.2012.08.016. PubMed DOI
Hatvani N, Mécs I. Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotox Environ Safe. 2003;55:199–203. doi: 10.1016/S0147-6513(02)00133-1. PubMed DOI
Herrman JL, Younes M. Background to the ADI/TDI/PTWI. Regul Toxicol Pharm. 1999;30:S109–S113. doi: 10.1006/rtph.1999.1335. PubMed DOI
Isildak Ö, Turkekul I, Elmastas M, Tuzen M. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 2004;86:547–552. doi: 10.1016/j.foodchem.2003.09.007. DOI
Isildak Ö, Turkekul I, Elmastas M, Aboul-Enein HY. Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett. 2007;40:1099–1116. doi: 10.1080/00032710701297042. DOI
Işiloǧlu M, Yilmaz F, Merdivan M. Concentrations of trace elements in wild edible mushrooms. Food Chem. 2001;73:169–175. doi: 10.1016/S0308-8146(00)00257-0. DOI
Işiloǧlu M, Merdivan M, Yilmaz F. Heavy metal contents in some macrofungi collected in the northwestern part of Turkey. Arch Environ Con Tox. 2001;41:1–7. doi: 10.1007/s002440010215. PubMed DOI
Johansson EM, Fransson PMA, Finlay RD, van Hees PAW. Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem. 2008;40:2225–2236. doi: 10.1016/j.soilbio.2008.04.016. DOI
Kalač P. Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem. 2009;113:9–16. doi: 10.1016/j.foodchem.2008.07.077. DOI
Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI
Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–281. doi: 10.1016/S0308-8146(99)00264-2. DOI
Kalač P, Svoboda L, Havlíčková B. Contents of cadmium and mercury in edible mushrooms. J Appl Biomed. 2004;2:15–20. doi: 10.32725/jab.2004.002. DOI
Karadeniz Ö, Yaprak G. 137Cs, 40K, alkali-alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. J Radioanal Nucl Ch. 2010;285:611–619. doi: 10.1007/s10967-010-0575-8. DOI
Kojta AK, Falandysz J. Soil-to-mushroom transfer and diversity in total mercury content in two edible Laccaria mushrooms. Environ Earth Sci. 2016;75:1264. doi: 10.1007/s12665-016-6072-9. DOI
Komárek M, Chrastný V, Štíchová J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ Int. 2007;33:677–684. doi: 10.1016/j.envint.2007.02.001. PubMed DOI
Konuk M, Afyon A, Yaǧiz D (2006) Chemical composition of some naturally growing and edible mushrooms. Pak J Bot 38:799-804. http://www.pakbs.org/pjbot/PDFs/38(3)/PJB38(3)799.pdf. Accessed 24 Aug 2019
Koroleva Y, Vakhranyova,O, Okhrimenko M (2015) Accumulation of trace elements by wild mushrooms in West part of Russia (South-Eastern Baltic). Pollution Atmosphérique 226:1-11. 10.4267/pollution-atmospherique.4989
Kosanić M, Ranković B, Rančić A, Stanojković T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal. 2016;24:477–484. doi: 10.1016/j.jfda.2016.01.008. PubMed DOI PMC
Krasińska G, Falandysz J. Mercury in Hazel Bolete Leccinum griseum and soil substratum: distribution, bioconcentration and dietary exposure. J Environ Sci Heal A. 2015;50:1259–1264. doi: 10.1080/10934529.2015.1055151. PubMed DOI
Krasińska G, Falandysz J. Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers. Environ Sci Pollut Res. 2016;23:860–869. doi: 10.1007/s11356-015-5331-8. PubMed DOI PMC
Krpata D, Fitz W, Peintner U, Langer I, Schweiger P. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environ Pollut. 2009;157:280–286. doi: 10.1016/j.envpol.2008.06.038. PubMed DOI
Krupa P, Kozdrój J. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microb Biot. 2004;20:427–430. doi: 10.1023/B:WIBI.0000033067.64061.f3. DOI
Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J. On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater. 2014;280:79–88. doi: 10.1016/j.jhazmat.2014.07.050. PubMed DOI
Kula İ, Solak MH, Uğurlu M, Işiloǧlu M, Arslan Y. Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muǧa, Turkey. B Environ Contam Tox. 2011;87:276–281. doi: 10.1007/s00128-011-0357-1. PubMed DOI
Larsen EH, Andersen NL, Møller A, Petersen A, Mortensen GK, Petersen J. Monitoring the content and intake of trace elements from food in Denmark. Food Addit Contam. 2002;19:33–46. doi: 10.1080/02652030110087447. PubMed DOI
Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics. 2014;6:1693. doi: 10.1039/C4MT00141A. PubMed DOI
Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem. 2014;158:207–215. doi: 10.1016/j.foodchem.2014.02.081. PubMed DOI
Llorente-Mirandes T, Llorens-Muñoz M, Funes-Collado V, Sahuquillo À, López-Sánchez JF. Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chem. 2016;194:849–856. doi: 10.1016/j.foodchem.2015.08.047. PubMed DOI
Lodenius M, Soltanpour-Gargari A, Tulisalo E. Cadmium in forest mushrooms after application of wood ash. B Environ Contam Tox. 2002;68:211–216. doi: 10.1007/s001280240. PubMed DOI
Maćkiewicz D, Falandysz J. Total mercury in Yellow Knights (Tricholoma equstre) mushrooms and beneath soils. Bull Environ Contam Toxicol. 2012;89:755–758. doi: 10.1007/s00128-012-0757-x. PubMed DOI PMC
Malinowska E, Szefer P, Falandysz J. Metals biaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem. 2004;84:405–416. doi: 10.1016/S0308-8146(03)00250-4. DOI
Malinowska E, Szefer P, Bojanowski R. Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem. 2006;97:19–24. doi: 10.1016/j.foodchem.2005.02.048. DOI
Marzano FN, Bracchi PG, Pizzetti P. Radioactive and conventional pollutants accumulated by edible mushrooms (Boletus sp.) are useful indicators of species origin. Environ Res. 2001;85:260–264. doi: 10.1006/enrs.2001.4233. PubMed DOI
Mattila P, Ko K. Contents of vitamins, mineral elements , and some phenolic compounds in cultivated mushrooms. J Agr Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI
Melgar MJ, Alonso J, García MA. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci Total Environ. 2007;385:12–19. doi: 10.1016/j.scitotenv.2007.07.011. PubMed DOI
Melgar MJ, Alonso J, García MA. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ. 2009;407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001. PubMed DOI
Melgar MJ, Alonso J, García MA. Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain) Food Chem Toxicol. 2014;73:44–50. doi: 10.1016/j.fct.2014.08.003. PubMed DOI
Melgar MJ, Alonso J, García MA. Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016;88:13–20. doi: 10.1016/j.fct.2015.12.002. PubMed DOI
Mendil D, Uluözlü ÖD, Hasdemir E, Çaǧlar A. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem. 2004;88:281–285. doi: 10.1016/j.foodchem.2004.01.039. DOI
Mendil D, Uluözlü ÖD, Tüzen M, Hasdemir E, Sari H. Trace metal levels in mushroom samples from Ordu, Turkey. Food Chem. 2005;91:463–467. doi: 10.1016/j.foodchem.2004.06.028. DOI
Mietelski JW, Baeza AS, Guillen J, Buzinny M, Tsigankov N, Gaca P, Jasińska M, Tomankiewicz E. Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Appl Radiat Isotopes. 2002;56:717–729. doi: 10.1016/S0969-8043(01)00281-0. PubMed DOI
Miklavčič A, Mazej D, Jaćimović R, Dizdareviǒ T, Horvat M. Mercury in food items from the Idrija Mercury Mine area. Environ Res. 2013;125:61–68. doi: 10.1016/j.envres.2013.02.008. PubMed DOI
Milinkovic M, Raicevic V, Lalevic B, Golubovic Curguz V, Jovanovic L (2012) Content of heavy metals in carpophores of wild mushroom (Boletus edulis). Proceedings of 6th Central European Congress on Food, Novi Sad, Serbia, pp 378-381. http://www.fins.uns.ac.rs/uploads/zbornici/CEFood-proceedings2012.pdf. Accessed 24 August 2019
Mirończuk-Chodakowska I, Socha K, Witkowska A, Zujko M, Borawska M. Cadmium and lead in wild edible mushrooms from the Eastern Region of Poland's ‘green lungs’. Pol J Environ Stud. 2013;22:1759–1765.
Mititelu M, Nicolescip TO, Ionita CA, Nicolescu F (2012) Heavy metals analysis of some wild edible mushrooms. J Environ Prot Ecol 13:875-879. https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4Ojc4ZTY5ZTc2OTg2ZjNkMDc. Accessed 24 Aug 2019
Mleczek M, Magdziak Z, Gąsecka M, Niedzielski P, Kalač P, Siwulski M, Rzymski P, Zalicka S, Sobieralski K. Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible musroom Boletus edulis (Fr.) Fr. from unpolluted and polluted areas. Environ Sci Pollut Res. 2016;23:20609–20618. doi: 10.1007/s11356-016-7222-z. PubMed DOI PMC
Mogîldea D (2016) Bioaccumulation of toxic heavy metals in mushrooms - a review. Oltenia Journal for Studies in Natural Sciences 32:157-163. http://biozoojournals.ro/oscsn/cont/32_2/22_Mogaldea.pdf. Accessed 24 Aug 2019
Moilanen M, Fritze H, Nieminen M, Piirainen S, Issakainen J, Piispanen J. Does wood ash application increase heavy metal accumulation in forest berries and mushrooms? Forest Ecol Manag. 2006;226:153–160. doi: 10.1016/j.foreco.2006.01.033. DOI
Moreno-Rojas R, Díaz-Valverde MA, Arroyo BM, González TJ, Capote CJB. Mineral content of gurumelo (Amanita ponderosa) Food Chem. 2004;85:325–330. doi: 10.1016/S0308-8146(03)00264-4. DOI
Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV. AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol. 2004;164:297–303. doi: 10.1111/j.1469-8137.2004.01190.x. PubMed DOI
Nagy B, Szilagyi B, Majdik C, Katona G, Indolean C, Măicăneanu A. Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: equilibrium isotherm and kinetic studies. Environmental Progress & Sustainable Energy. 2014;33:1158–1170. doi: 10.1002/ep11897. DOI
Nikkarinen M, Mertanen E. Impact of geological origin on trace element composition of edible mushrooms. J Food Compos Anal. 2004;17:301–310. doi: 10.1016/j.jfca.2004.03.013. DOI
Nováčková J, Fiala P, Chrastný V, Svoboda L, Kalač P (2007) Contents of mercury, cadmium and lead in edible mushrooms and in underlying substrates from a rural area with an occurrence of serpentines and amphiboles. Ekol Bratislava 26:322-329. http://147.213.211.222/node/2317. Accessed 24 Aug 2019
Omil B, Piñeiro V, Merino A. Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Sci Total Environ. 2007;381:157–168. doi: 10.1016/j.scitotenv.2007.04.004. PubMed DOI
Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P. Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol. 2011;190:916–926. doi: 10.1111/j.1469-8137.2010.03634.x. PubMed DOI
Ostos C, Pérez-Rodríguez F, Arroyo BM, Moreno-Rojas R. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. J Food Compos Anal. 2015;37:136–142. doi: 10.1016/j.jfca.2014.04.014. DOI
Ott T, Fritz E, Polle A, Schützendübel A. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol. 2002;42:359–366. doi: 10.1016/S0168-6496(02)00328-8. PubMed DOI
Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA. Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal. 2007;20:480–486. doi: 10.1016/j.jfca.2007.02.008. DOI
Ouzouni PK, Petridis D, Koller WD, Riganakos KA. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009;115:1575–1580. doi: 10.1016/j.foodchem.2009.02.014. DOI
Özcan MM, Dursun N, Al Juhaimi FY. Heavy metals intake by cultured mushrooms growing in model system. Environl Monit Assess. 2013;185:8393–8397. doi: 10.1007/s10661-013-3181-8. PubMed DOI
Ozturk I, Sahan S, Sahin U, Ekici L, Sagdic O. Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean Region. J Verbrauch Lebens. 2010;5:453–457. doi: 10.1007/s00003-010-0625-8. DOI
Perkiömäki J, Kiikkilä O, Moilanen M, Issakainen J, Tervahauta A, Fritze H. Cadmium-containing wood ash in a pine forest: effects on humus microflora and cadmium concentrations in mushrooms, berries, and needles. Can J Forest Res. 2003;33:2443–2451. doi: 10.1139/x03-169. DOI
Petkovšek SAS, Pokorny B. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci Total Environ. 2013;443:944–954. doi: 10.1016/j.scitotenv.2012.11.007. PubMed DOI
Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. B Environ Contam Tox. 2010;84:641–646. doi: 10.1007/s00128-010-9976-1. PubMed DOI
Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VG (2010b) Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Rom Biotech Lett 15:5444-5456. https://e-repository.org/rbl/vol.15/iss.4/11.pdf. Accessed 24 Aug 2019
Radulescu C, Stihi C, Popescu IV, Busuioc G, Gheboianu AI, Cimpoca VG, Dulamă ID, Diaconescu M (2010c) Determination of heavy metals content in wild mushr ooms and soil by EDXRF and FAAS techniques. Ovidius University Annals of Chemistry 21:9-14. http://anale-chimie.univ-ovidius.ro/anale-chimie/chemistry/2010-1/full/2_Radulescu.pdf. Accessed 24 Aug 2019
Rakić M, Karaman M, Forkapić S, Hansman J, Kebert M, Bikit K, Mrdja D. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut R. 2014;21:11283–11292. doi: 10.1007/s11356-014-2967-8. PubMed DOI
Řanda Z, Kučera J. Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Ch. 2004;259:99–107. doi: 10.1023/B:JRNC.0000015813.27926.32. DOI
Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut. 2011;159:2861–2869. doi: 10.1016/j.envpol.2011.04.040. PubMed DOI
Román M, Boa E, Woodward S. Wild-gathered fungi for health and rural livelihoods. P Nutr Soc. 2006;65:190–197. doi: 10.1079/pns2006491. PubMed DOI
Rudawska M, Leski T. Macro- and microelemnt contents in fruting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem. 2005;92:499–506. doi: 10.1016/j.foodchem.2004.08.017. DOI
Rudawska M, Leski T. Trace elemnts in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Sci Total Environ. 2005;399:103–115. doi: 10.1016/j.scitotenv.2004.08.002. PubMed DOI
Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics. 2013;5:1225–1233. doi: 10.1039/c3mt00061c. PubMed DOI
Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol. 2014;67:3–14. doi: 10.1016/j.fgb.2014.03.003. PubMed DOI
Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Rusula atropurpurea. Biometals. 2016;29:349–363. doi: 10.1007/s10534-016-9920-x. PubMed DOI
Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol. 2010;48:1230–1233. doi: 10.1016/j.fct.2009.12.033. PubMed DOI
Sarikurkcu C, Copur M, Yildiz D, Akata I. Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem. 2011;128:731–734. doi: 10.1016/j.foodchem.2011.03.097. DOI
Sarikurkcu C, Tepe B, Solak MH, Cetinkaya S. Metal concentrations of wild edible ushrooms from Turkey. Ecolo Food Nutr. 2012;51:346–363. doi: 10.1080/03670244.2012.674448. PubMed DOI
Sarikurkcu C, Tepe B, Kocak MS, Uren MC. Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015;175:549–555. doi: 10.1016/j.foodchem.2014.12.019. PubMed DOI
Schlecht MT, Säumel I. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ Pollut. 2015;204:298–305. doi: 10.1016/j.envpol.2015.05.018. PubMed DOI
Şen I, Alli H, Çöl B. Boron contents of some wild-growing mushrooms collected from the vicinity of boron mines in Balikesir, Turkey. Biol Trace Elem Res. 2012;145:233–239. doi: 10.1007/s12011-011-9170-2. PubMed DOI
Sesli E (2006) Trace element contents of some selected fungi in the ecosystem of Turkey. Fresen Environ Bull 15:518-523. https://www.prt-parlar.de/download_feb_2006/. Accessed 24 Aug 2019
Sesli E, Dalman Ö (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize Province of Turkey. Asian J Chem 18:2179-2184. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx? ArticleID=18_3_73.Accessed 24 Aug 2019
Sesli E, Tuzen M (2006) Micro- and macroelement contents of edible, wild growing mushrooms in Artvin Province of Turkey. Asian J Chem 18:1423-1429. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx? ArticleID=18_2_101. Accessed 24 August 2019
Sesli E, Tuzen M, Soylak M. Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater. 2008;160:462–467. doi: 10.1016/j.jhazmat.2008.03.020. PubMed DOI
Severoglu Z, Sumer S, Yalcin B, Leblebici Z, Aksoy A. Trace metal levels in edible wild fungi. Int J Environ Sci Te. 2013;10:295–304. doi: 10.1007/s13762-012-0139-2. DOI
Širić I, Kos I, Bedeković D, Kaić A, Kasap A (2014) Heavy metals in edible mushroom Boletus reticulatus Schaeff. Collected from Zrin mountain, Croatia. Period Biol 116:319-322. Retrieved from https://hrcak.srce.hr/file/199348. Accessed 24 Aug 2019
Širić I, Humar M, Kasap A, Kos I, Mioč B, Pohleven F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ Sci Pollut R. 2016;23:18239–18252. doi: 10.1007/s11356-016-7027-0. PubMed DOI
Širić I, Kasap A, Kos I, Markota T, Tomić D, Poljak M (2016b) Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Šumar List 140:29-37. https://www.sumari.hr/sumlist/pdf/201600290.pdf. Accessed 24 Aug 2019
Sivrikaya H, Bacak L, Saraçbaşı A, Toroğlu I, Eroğlu H. Trace elements in Pleurotus sajor-caju cultivated on chemithermomechanical pulp for bio-bleaching. Food Chem. 2002;79:173–176. doi: 10.1016/S0308-8146(02)00128-0. DOI
Škrbić B, Milovac S, Matavulj M. Multielement profiles of soil, road dust, tree bark and wood-rotten fungi collected at various distances from high-frequency road in urban area. Ecol Indic. 2012;13:168–177. doi: 10.1016/j.ecolind.2011.05.023. DOI
Slávik M, Tóth T, Harangozo Ľ, Árvay J, Stanovič R, Miššík J (2013) The content of mercury in edible mushrooms from Middle Spiš area. J Microbiol Biotechn Food Sci 2:2115-2124. https://www.jmbfs.org/wp-content/uploads/2013/06/114_jmbs_slavik_fbp_f.pdf. Accessed 24 Aug 2019
Soeroes C, Kienzl N, Ipolyi I, Dernovics M, Fodor P, Kuehnelt D. Arsenic uptake and arsenic compounds in cultivated Agaricus bisporus. Food Control. 2005;16:459–464. doi: 10.1016/j.foodcont.2004.05.007. DOI
Soylak M, Saraçoǧlu S, Tüzen M, Mendil D. Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem. 2005;92:649–652. doi: 10.1016/j.foodchem.2004.08.032. DOI
Stefanović V, Trifković J, Djurdjić S, Vukojević V, Tešić Ž, Mutić J. Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environ Sci Pollut R. 2016;23:22084–22098. doi: 10.1007/s11356-016-7450-2. PubMed DOI
Stefanović V, Trifković J, Mutić J, Tešić Ž. Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia) Environ Sci Pollut R. 2016;23:13178–13190. doi: 10.1007/s11356-016-6486-7. PubMed DOI
Stihi C, Busuioc G, Radulescu C, Elekes C, Ciulei S (2011) Determination of Fe and Zn accumulation in leafy vegetables and mushrooms using energy dispersive X-Ray fluorescence technique. Bulletin UASVM Agriculture 68:143-147. https://journals.usamvcluj.ro/index.php/agriculture/article/view/6539. Accessed 24 Aug 2019
Svoboda L, Chrastný V. Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam A. 2008;25:51–58. doi: 10.1080/02652030701458519. PubMed DOI
Svoboda L, Kalač P. Contamination of two edible Agaricus spp. mushrooms growing in a town with cadmium, lead, and mercury. B Environ Contam Tox. 2003;71:123–130. doi: 10.1007/s00128-003-0138-6. PubMed DOI
Svoboda L, Kalač P, Špička J, Janoušková D. Leaching of cadmium, lead and mercury from fresh and differently preserved edible mushroom, Xerocomus badius, during soaking and boiling. Food Chem. 2002;79:41–45. doi: 10.1016/S0308-8146(02)00175-9. DOI
Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96:580–585. doi: 10.1016/j.foodchem.2005.03.012. DOI
Świsłowski P, Rajfur M. Bioaccumulation of elements in mushrooms - review of selected literature (in polish) Proc ECOpole. 2017;11:591–599. doi: 10.2429/proc.2017.11(2)067. DOI
Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25:557–568. doi: 10.1515/eces-2018-0037. DOI
Tasdemir G, Yamac M, Cabuk A, Yildiz Z (2008) Selection of newly isolated mushroom strains for tolerance and biosorption of zin in vitro. J Microbiol Biotechn 18:483-489. http://www.jmb.or.kr/journal/view.html?book=Journal&tops=&start=0&scale=50&key=all&key_word=&Vol=18&Num=3&PG=&year1=&year2=&sort=publish_Date+desc&aut_box=Y&sub_box=Y&sos_box=&key_box=&pub_box=Y&abs_box=&mod=vol&mnum=1649&multi%5B%5D=2501&multi%5B%5D=752&multi%5B%5D=1800&multi%5B%5D=1614&multi%5B%5D=1630&multi%5B%5D=436&multi%5B%5D=2268&multi%5B%5D=1910&multi%5B%5D=1952&multi%5B%5D=1761&multi%5B%5D=1568&multi%5B%5D=1522&multi%5B%5D=1649&multi%5B%5D=2403&multi%5B%5D=1932&multi%5B%5D=2206&multi%5B%5D=716&multi%5B%5D=2304&multi%5B%5D=574&multi%5B%5D=376&multi%5B%5D=662&multi%5B%5D=1223&multi%5B%5D=1332&multi%5B%5D=2322&multi%5B%5D=848&multi%5B%5D=546&multi%5B%5D=1119&multi%5B%5D=847&multi%5B%5D=1307&multi%5B%5D=2405. Accessed 24 Aug 2019 PubMed
Turkekul I, Elmastas M, Tüzen M. Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem. 2004;84:389–392. doi: 10.1016/S0308-8146(03)00245-0. DOI
Türkmen M, Budur D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018;254:256–259. doi: 10.1016/j.foodchem.2018.02.010. PubMed DOI
Tüzen M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J. 2003;74:289–297. doi: 10.1016/S0026-265X(03)00035-3. DOI
Tüzen M, Soylak M. Mercury contamination in mushroom samples from Tokat, Turkey. B Environ Contam Tox. 2005;74:968–972. doi: 10.1007/s00128-005-0674-3. PubMed DOI
Tüzen M, Sesli E, Soylak M. Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control. 2007;18:806–810. doi: 10.1016/j.foodcont.2006.04.003. DOI
Vaario LM, Pennanen T, Lu J, Palmén J, Stenman J, Leveinen J, Kilpeläinen P, Kitunen V. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. Mycorrhiza. 2015;25:325–334. doi: 10.1007/s00572-014-0615-2. PubMed DOI
Vetter J. Data on sodium content of common edible mushrooms. Food Chem. 2003;81:589–593. doi: 10.1016/S0308-8146(02)00501-0. DOI
Vetter J. Chemical composition of fresh and conserved Agaricus bisporus mushroom. Eur Food Res Technol. 2003;217:10–12. doi: 10.1007/s00217-003-0707-2. DOI
Vetter J. Arsenic content of some edible mushroom species. Eur Food Res Technol. 2004;219:71–74. doi: 10.1007/s00217-004-0905-6. DOI
Vetter J. Lithium content of some common edible wild-growing mushrooms. Food Chem. 2005;90:31–37. doi: 10.1016/j.foodchem.2004.03.019. DOI
Vetter J. Mineral composition of basidiomes of Amanita species. Mycol Res. 2005;109:746–750. doi: 10.1017/S0953756205002455. PubMed DOI
Vetter J, Berta E. Mercury content of the cultivated mushroom Agaricus bisporus. Food Control. 2005;16:113–116. doi: 10.1016/j.foodcont.2003.12.004. DOI
Vinichuk M. Selected metals in various fractions of soil and fungi in a swedish forest. ISRN Ecol. 2012;2012:1–7. doi: 10.5402/2012/521582. DOI
Weeks CA, Croasdale M, Osborne MA, Hewitt L, Miller PF, Robb P, Baxter MJ, Warriss PD, Knowles TG. Multi-element survey of wild edible fungi and blackberries in the UK. Food Addit Contam. 2006;23:140–147. doi: 10.1080/02652030500386184. PubMed DOI
Yaǧiz D, Konuk M, Afyon A, Kök SM (2008) Minor element and heavy metal content of edible wild mushrooms native to Bolu, North-West Turkey. Fres Environ Bull 17:249-252. https://www.prt-parlar.de/download_feb_2008/. Accessed 24 Aug 2019
Yamaç M, Yildiz D, Sarikürkcü C, Çelikkollu M, Solak MH. Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem. 2007;103:263–267. doi: 10.1016/j.foodchem.2006.07.041. DOI
Yeşil ÖF, Yildiz A, Yavuz Ö. Level of heavy metals in some edible and poisonous macrofungi of Diyarbakir Region in Turkey. B Environ Contam Tox. 2004;73:853–861. doi: 10.1007/s00128-004-0505-y. PubMed DOI
Yilmaz F, Isiloglu M, Merdivan M (2003) Heavy metal levels in some macrofungi. Turk J Bot 27:45-56. http://journals.tubitak.gov.tr/botany/issues/bot-03-27-1/bot-27-1-4-0105-6.pdf. Accessed 24 Aug 2019
Zhang D, Frankowska A, Jarzyńska G, Kojta A, Drewnowska M, Wydmańska D, Bielawski L, Wang J, Falandysz J. Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. Afr J Agr Res. 2010;5:3050–3055.
Zhang D, Zhang Y, Morawska E, Bielawski L, Krasińska G, Drewnowska M, Pankavec S, Szymańska K, Falandysz J. Trace elements in Leccinum scabrum mushrooms and topsoils from Kłodzka Dale in Sudety Mountains, Poland. J Mt Sci. 2013;10:621–627. doi: 10.1007/s11629-013-2384-3. DOI
Zimmermannová K, Svoboda L, Kalač P (2001) Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spiš region, Slovakia. Ekol Bratislava 20:440-446. http://147.213.211.222/node/2850. Accessed 24 Aug 2019
Zsigmond AR, Varga K, Harangi S, Baranyai E, Urák I. Elemental profile of edible mushrooms from a forest near a major Romanian city. Acta Universitatis Sapientiae, Agriculture and Environment. 2015;7:98–107. doi: 10.1515/ausae-2015-0009. DOI
Žunić ZS, Mietelski JW, Błażej S, Gaca P, Tomankiewicz E, Ujić P, Čeliković I, Čuknić O, Demajo M. Traces of DU in samples of environmental bio-monitors (non-flowering plants, fungi) and soil from target sites of the Western Balkan region. J Environ Radioactiv. 2008;99:1324–1328. doi: 10.1016/j.jenvrad.2008.04.005. PubMed DOI