Bibliometric analysis of European publications between 2001 and 2016 on concentrations of selected elements in mushrooms

. 2020 Jun ; 27 (18) : 22235-22250. [epub] 20200423

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32329001
Odkazy

PubMed 32329001
PubMed Central PMC7293692
DOI 10.1007/s11356-020-08693-5
PII: 10.1007/s11356-020-08693-5
Knihovny.cz E-zdroje

This article presents a bibliometric study of 200 European publications released between 2001 and 2016, about the contamination of mushrooms by selected elements. The analysis includes figures on the type of analyte, its concentration, the species of fungi, and its country of origin. In the literature review, 492 species of mushrooms (wild-growing and cultured) found in 26 European countries and their concentration of 74 associated elements were analysed. The papers, which dealt mainly with the heavy metal (Cd, Cu, Fe, Pb, and Zn) concentrations of mushrooms, primarily came from Turkey, Poland, Spain, and the Czech Republic. More than 50% of the publications provided data about edible mushrooms. The results of the bibliometric analysis showed that over the 16 years, European research on fungal contamination by selected analytes has not lessened in popularity and is ongoing. Many of the studies underlined the need to assess the risk to human health arising from the consumption of contaminated mushrooms taken from various habitats. These results were the effect of, among other things, the strong interest in studies carried out on edible species, in which concentrations of mainly heavy metals that are dangerous to health and are marked were indicated (Cd, Pb, and Hg).

Zobrazit více v PubMed

Adriaensen K, Van Der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV. A zinc-adapted fungus protects pines from zinc stress. New Phytol. 2003;161:549–555. doi: 10.1046/j.1469-8137.2003.00941.x. PubMed DOI

Alonso J, García MA, Pérez-López M, Melgar MJ. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Con Tox. 2003;44:180–188. doi: 10.1007/s00244-002-2051-0. PubMed DOI

Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Safe. 2012;78:184–194. doi: 10.1016/j.ecoenv.2011.11.018. PubMed DOI

Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH. Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea Region of Turkey. Food Nutr Sci. 2011;02:53–59. doi: 10.4236/fns.2011.22007. DOI

Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbio Lett. 2002;206:69–74. doi: 10.1016/S0378-1097(01)00519-5. PubMed DOI

Baumann N, Arnold T, Haferburg G. Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut R. 2014;21:6921–6929. doi: 10.1007/s11356-013-1913-5. PubMed DOI

Benbrahim M, Denaix L, Thomas A-L, Balet J, Carnus JM. Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut. 2006;144:847–854. doi: 10.1016/j.envpol.2006.02.014. PubMed DOI

Blanuša M, Kučak A, Varnai VM, Sarić MM. Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int. 2001;84:1964–1971. doi: 10.1093/jaoac/84.6.1964. PubMed DOI

Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Non-wood Forest Products. FAO, Rome

Borovička J, Řanda Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog. 2007;6:249–259. doi: 10.1007/s11557-007-0544-y. DOI

Borovička J, Řanda Z, Jelínek E. Gold content of ectomycorrhizal and saprobic macrofungi from non-auriferous and unpolluted areas. Mycol Res. 2005;109:951–955. doi: 10.1017/S095375620500328X. PubMed DOI

Borovička J, Řanda Z, Jelínek E. Antimony content of macrofungi from clean and polluted areas. Chemosphere. 2006;64:1837–1844. doi: 10.1016/j.chemosphere.2006.01.060. PubMed DOI

Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE. Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res. 2007;111:1339–1344. doi: 10.1016/j.mycres.2007.08.015. PubMed DOI

Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Stijve T, Dunn CE. Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ. 2010;408:2733–2744. doi: 10.1016/j.scitotenv.2010.02.031. PubMed DOI

Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, Rohošková M, Řanda Z. Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem. 2010;42:83–91. doi: 10.1016/j.soilbio.2009.10.003. DOI

Borovička J, Kubrová J, Rohovec J, Řanda Z, Dunn CE. Uranium, thorium and rare earth elements in macrofungi: What are the genuine concentrations? BioMetals. 2011;24:837–845. doi: 10.1007/s10534-011-9435-4. PubMed DOI

Borovička J, Mihaljevič M, Gryndler M, Kubrová J, Žigová A, Hršelová H, Řanda Z. Lead isotopic signatures of saprotrophic macrofungi of various origins: tracing for lead sources and possible applications in geomycology. Appl Geochem. 2014;43:114–120. doi: 10.1016/j.apgeochem.2014.02.012. DOI

Brzostowski A, Bielawski L, Orlikowska A, Plichta S, Falandysz J (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chem Anal (Warsaw) 54:1297 http://beta.chem.uw.edu.pl/chemanal/PDFs/2009/CHAN2009V54P01297.pdf. Accessed 24 Aug 2019

Brzostowski A, Falandysz J, Jarzyńska G, Zhang D. Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. J Environ Sci Heal A. 2011;46:378–393. doi: 10.1080/10934529.2011.542387. PubMed DOI

Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut R. 2011;18:890–896. doi: 10.1007/s11356-011-0446-z. PubMed DOI

Campos JA, Tejera NA. Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res. 2011;143:540–554. doi: 10.1007/s12011-010-8853-4. PubMed DOI

Campos JA, Tejera NA, Sánchez CJ. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. BioMetals. 2009;22:835–841. doi: 10.1007/s10534-009-9230-7. PubMed DOI

Carvalho ML, Pimentel AC, Fernandes B. Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal Sci. 2005;21:747–750. doi: 10.2116/analsci.21.747. PubMed DOI

Çayir A, Coşkun M, Coşkun M. The heavy metal content of wild edible mushroom samples collected in canakkale province, Turkey. Biol Trace Elem Res. 2010;134:212–219. doi: 10.1007/s12011-009-8464-0. PubMed DOI

Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut. 2016;218:176–185. doi: 10.1016/j.envpol.2016.08.009. PubMed DOI

Chang C, Ho Y. Bibliometric analysis of financial crisis research. Afr J Bus Manage. 2010;4:3898–3910.

Chudzyński K, Falandysz J. Multivariate analysis of elements of Larch Bolete (Suillus grevillei) mushroom. Chemosphere. 2008;73:1230–1239. doi: 10.1016/j.chemosphere.2008.07.055. PubMed DOI

Chudzyński K, Bielawski L, Falandysz J. Mercury bio-concentration potential of Larch Bolete, Suillus grevillei, mushroom. Bull Environ Contam Toxicol. 2009;83:275–279. doi: 10.1007/s00128-009-9723-7. PubMed DOI

Chudzyński K, Jarzyńska G, Stefańska A, Falandysz J. Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chem. 2011;125:986–990. doi: 10.1016/j.foodchem.2010.09.102. DOI

Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006;98:277–284. doi: 10.1016/j.foodchem.2005.05.068. DOI

Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steinnes E. Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geochemistry: Exploration, Environment, Analysis. 2002;2:121–130. doi: 10.1144/1467-787302-015. DOI

Collin-Hansen C, Andersen RA, Steinnes E. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. Journal de Physique IV France. 2003;107:311–314. doi: 10.1051/jp4:20030304. DOI

Collin-Hansen C, Andersen RA, Steinnes E. Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res. 2005;109:1386–1396. doi: 10.1017/S0953756205004016. PubMed DOI

Collin-Hansen C, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia. 2005;97:000–000. doi: 10.3852/mycologia.97.5.973. PubMed DOI

Colpaert JV, Mulle LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549-559. https:// 10.1111/j.1469-8137.2004.01037.x

Cordeiro F, Llorente-Mirandes T, López-Sánchez JF, Rubio R, Sánchez Agullo A, Raber G, Scharf H, Vélez D, Deversa V, Fiamegos Y, Emteborg H, Seghers J, Robouch P, de la Calle MB. Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Addit Contam A. 2015;32:54–67. doi: 10.1080/19440049.2014.966336. PubMed DOI PMC

Costa-Silva F, Marques G, Matos CC, Barros A, Nunes FM. Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem. 2011;126:91–96. doi: 10.1016/j.foodchem.2010.10.082. DOI

Cremades O, Diaz-Herrero MM, Carbonero-Aguilar P, Gutierrez-Gil JF, Fontiveros E, Rodríguez-Morgado B, Parrado J, Bautista J. Preparation and characterisation of selenium-enriched mushroom aqueous enzymatic extracts (MAEE) obtained from the white button mushroom (Agaricus bisporus) Food Chem. 2012;133:1538–1543. doi: 10.1016/j.foodchem.2012.02.046. DOI

Cuny D, Van Haluwyn C, Pesch R. Biomonitoring of trace elements in air and soil compartments along the major motorway in France. Water Air Soil Poll. 2001;125:273–289. doi: 10.1023/A:1005278900969. DOI

Daillant O, Boilley D, Josset M, Hettwig B, Fischer HW. Evolution of radiocaesium contamination in mushrooms and influence of treatment after collection. J Radioanal Nucl Ch. 2013;297:437–441. doi: 10.1007/s10967-012-2411-9. DOI

de Freitas VG, Alves-Souza SN. A systematic literature review on big data for solar photovoltaic electricity generation forecasting. Sus Energy Technol Assess. 2019;31:54–63. doi: 10.1016/j.seta.2018.11.008. DOI

Dementyev DV, Zotina TA, Manukovsky NS, Kalacheva GS. Biosorption of 241Am from solution and its biochemical fractionation in the mycelium of macromycetes. Radiochemistry. 2015;57:661–665. doi: 10.1134/s1066362215060144. PubMed DOI

Dementyev DV, Zotina TA, Manukovsky NS, Kalacheva GS, Bolsunovsky AY. Biosorption of 241Am from aqueous solutions and its biochemical fractionation in Pleurotus ostreatus mycelium. Dokl Biochem Biophys. 2015;460:34–36. doi: 10.1134/s160767291501010x. PubMed DOI

Demirbaş A. Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem. 2001;75:453–457. doi: 10.1016/S0308-8146(01)00236-9. DOI

Demirbaş A. Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem. 2001;74:293–301. doi: 10.1016/S0308-8146(01)00155-8. DOI

Demirbaş A. Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem. 2002;78:89–93. doi: 10.1016/S0308-8146(01)00389-2. DOI

Dernovics M, Stefánka Z, Fodor P. Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem. 2002;372:473–480. doi: 10.1007/s00216-001-1215-5. PubMed DOI

Díaz Huerta V, Fernández Sánchez ML, Sanz-Medel A. Qualitative and quantitative speciation analysis of water soluble selenium in three edible wild mushrooms species by liquid chromatography using post-column isotope dilution ICP-MS. Anal Chim Acta. 2005;538:99–105. doi: 10.1016/j.aca.2005.02.033. DOI

Dimitrijevic MV, Mitic VD, Cvetkovic JS, Stankov Jovanovic VP, Mutic J, Nikolic Mandic SD. Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Eur Food Res Technol. 2016;242:1–10. doi: 10.1007/s00217-015-2512-0. DOI

Djingova R, Kovacheva P, Wagner G, Markert B. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ. 2003;308:235–246. doi: 10.1016/S0048-9697(02)00677-0. PubMed DOI

Drewnowska M, Nnorom I, Falandysz J. Mercury in the Grisette, Amanita vaginata Fr. and soil below the fruiting bodies. J Environ Sci Heal B. 2014;49:521–526. doi: 10.1080/03601234.2014.896677. PubMed DOI

Dryżałowska A, Falandysz J. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: levels, possible intake and safety. Ecotox Environ Safe. 2014;107:97–102. doi: 10.1016/j.ecoenv.2014.05.020. PubMed DOI

Duran C, Senturk HB, Elci L, Soylak M, Tufekci M. Simultaneous preconcentration of Co (II), Ni (II), Cu (II), and Cd (II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. J Hazard Mater. 2009;162:292–299. doi: 10.1016/j.jhazmat.2008.05.034. PubMed DOI

Elekes CC, Busuioc G, Dumitriu I (2009) Heavy metals concentration level in some wild growing species of Cortinarius genus. Annals. Food Science and Technology 10:473-477. http://www.afst.valahia.ro/images/documente/2009/1-ELEKES_BUSUIOC_DUMITRIU_EN.pdf. Accessed 24 Aug 2019

Ertugay N, Bayhan YK. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. J Hazard Mater. 2008;154:432–439. doi: 10.1016/j.jhazmat.2007.10.070. PubMed DOI

Ertugay N, Bayhan YK. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination. 2010;255:137–142. doi: 10.1016/j.desal.2010.01.002. DOI

EU (2008) Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Office J European Union 372008L173/6–9

Falandysz J. Mercury accumulation of three Lactarius mushroom species. Food Chem. 2017;214:96–101. doi: 10.1016/j.foodchem.2016.07.062. PubMed DOI

Falandysz J, Bielawski L. Mercury content of wild edible mushrooms collected near the town of Augustow. Pol J Environ Stud. 2001;10:67–71.

Falandysz J, Bielawski L. Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 2007;105:635–640. doi: 10.1016/j.foodchem.2007.04.024. DOI

Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC

Falandysz J, Drewnowska M. Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: accumulation, loss in cooking and dietary intake. Ecotox Environ Safe. 2015;115:49–54. doi: 10.1016/j.ecoenv.2015.02.004. PubMed DOI

Falandysz J, Gucia M. Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera) Environ Geochem Health. 2008;30:121–125. doi: 10.1007/s10653-008-9133-5. PubMed DOI

Falandysz J, Gucia M, Frankowska A, Kawano M, Skwarzec B. Total mercury in wild mushrooms and underlying soil substrate from the city of Umeå and its surroundings, Sweden. B Environ Contam Tox. 2001;67:763–770. doi: 10.1007/s00128-001-0188-6. PubMed DOI

Falandysz J, Szymczak K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki S-I. ICP/MS and ICP/AES elemental analysis (38 elements) of efible wild mushrooms growing in Poland. Food Addit Contam. 2001;18:503–513. doi: 10.1080/02652030119625. PubMed DOI

Falandysz J, Lipka K, Gucia M, Kawano M, Strumnik K, Kannan K. Accuulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environ Int. 2002;28:421–427. doi: 10.1016/S0160-4120(02)00067-3. PubMed DOI

Falandysz J, Gucia M, Skwarzec B, Frankowska A, Klawikowska K. Total mercury in mushrooms and underlying soil substrate from the Borecka Forest, Northeastern Poland. Arch Environ Contam Toxicol. 2002;42:145–154. doi: 10.1007/s00244-001-0026-1. PubMed DOI

Falandysz J, Brzostowski A, Kawano M, Kannan K, Puzyn T, Lipka K. Cncentrations of mercury in wild growing higher fungi and underlying substrate near lake Wdzydze, Poland. Water Air Soil Poll. 2003;148:127–137. doi: 10.1023/A:1025422017868. DOI

Falandysz J, Kawano M, Świeczkowski A, Brzostowski A, Dadej M. Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chem. 2003;81:21–26. doi: 10.1016/S0308-8146(02)00344-8. DOI

Falandysz J, Frankowska A, Mazur A. Mercury and its bioconcentration factors in King Bolete (Boletus edulis) Bull. Fr. J Environ Sci Heal A. 2007;42:2089–2095. doi: 10.1080/10934520701627058. PubMed DOI

Falandysz J, Kunito T, Kubota R, Bielawski L, Frankowska A, Falandysz J, Tanabe S. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. J Environ Sci Heal A. 2008;43:1692–1699. doi: 10.1080/10934520802330206. PubMed DOI

Falandysz J, Sapkota A, Mędyk M, Feng X. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem. 2017;221:24–28. doi: 10.1016/j.foodchem.2016.10.047. PubMed DOI

Figueiredo E, Soares ME, Baptista P, Castro M, Bastos ML. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium (VI) in wild mushrooms and underlying soils. J Agr Food Chem. 2007;55:7192–7198. doi: 10.1021/jf0710027. PubMed DOI

Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem. 2005;37:851–866. doi: 10.1016/j.soilbio.2004.10.013. DOI

Frankowska A, Ziółkowska J, Bielawski L, Falandysz J. Profile and bioconcentration of minerals by King Bolete (boletus edulis) from the Płocka Dale in Poland. Food Addi Contam B. 2010;3:1–6. doi: 10.1080/19440040903505232. PubMed DOI

Frutos I, García-Delgado C, Gárate A, Eymar E. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Te. 2016;13:2713–2720. doi: 10.1007/s13762-016-1100-6. DOI

Gabriel J, Švec K, Kolihová D, Tlustoš P, Száková J. Translocation of mercury from substrate to fruit bodies of Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata on oat flakes. Ecotox Environ Safe. 2016;125:184–189. doi: 10.1016/j.ecoenv.2015.12.009. PubMed DOI

García MA, Alonso J, Melgar MJ. Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biot. 2005;80:325–330. doi: 10.1002/jctb.1203. DOI

García MA, Alonso J, Melgar MJ. Lead in edible mushrooms. Levels and bioaccumulation factors. J Hazard Mater. 2009;167:777–783. doi: 10.1016/j.jhazmat.2009.01.058. PubMed DOI

García MA, Alonso J, Melgar MJ. Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors. Food Chem Toxicol. 2013;58:249–254. doi: 10.1016/j.fct.2013.04.049. PubMed DOI

García MA, Alonso J, Melgar MJ. Radiocaesium activity concentrations in macrofungi from Galicia (NW Spain): influence of environmental and genetic factors. Ecotox Environ Safe. 2015;115:152–158. doi: 10.1016/j.ecoenv.2015.02.005. PubMed DOI

García-Delgado C, Jiménez-Ayuso N, Frutos I, Gárate A, Eymar E. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate. Environ Sci Pollut R. 2013;20:8690–8699. doi: 10.1007/s11356-013-1829-0. PubMed DOI

García-Delgado C, Yunta F, Eymar E. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: polycyclic aromatic hydrocarbons degradation and Pb availability. J Hazard Mater. 2015;300:281–288. doi: 10.1016/j.jhazmat.2015.07.008. PubMed DOI

Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009;113:1033–1036. doi: 10.1016/j.foodchem.2008.08.058. DOI

Gezer K, Kaygusuz O (2014) An assessment of the heavy metal content of various wild edible mushrooms in the Denizli Province, Turkey. J Environ Prot Ecol 15:425-432. https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjZhMjFjN2Q2MTYwNWE4MDQ. Accessed 24 Aug 2019

Giannaccini G, Betti L, Palego L, Mascia G, Schmid L, Lanza M, Mela A, Fabbrini L, Biondi L, Lucacchini A. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ Monit Assess. 2012;184:7579–7595. doi: 10.1007/s10661-012-2520-5. PubMed DOI

Gonzálvez A, Llorens A, Cervera ML, Armenta S, de la Guardia M. Non-chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry. Food Chem. 2009;115:360–364. doi: 10.1016/j.foodchem.2008.11.088. DOI

Gorbunova IA, Koutzenogii KP, Koval’skaya GA, Chankina OV, Savchenko TI. Elemental composition of mushrooms from Gorny Altai. Contemp Probl Ecol. 2009;2:46–50. doi: 10.1134/s1995425509010081. DOI

Gramss G, Voigt KD. Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. BiolTrace Elem Res. 2013;154:140–149. doi: 10.1007/s12011-013-9719-3. PubMed DOI

Gryndler M, Hršelová H, Soukupová L, Borovička J. Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. BioMetals. 2012;25:987–993. doi: 10.1007/s10534-012-9564-4. PubMed DOI

Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, Falandysz J. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res. 2012;19:416–431. doi: 10.1007/s11356-011-0574-5. PubMed DOI PMC

Guillén J, Baeza A, Ontalba MA, Míguez MP. 210Pb and stable lead content in fungi: its transfer from soil. Sci Total Environ. 2009;407:4320–4326. doi: 10.1016/j.scitotenv.2009.03.025. PubMed DOI

Gursoy N, Sarikurkcu C, Cengiz M, Solak MH. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol. 2009;47:2381–2388. doi: 10.1016/j.fct.2009.06.032. PubMed DOI

Gwynn JP, Nalbandyan A, Rudolfsen G. 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J Environ Radioactiv. 2013;116:34–41. doi: 10.1016/j.jenvrad.2012.08.016. PubMed DOI

Hatvani N, Mécs I. Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotox Environ Safe. 2003;55:199–203. doi: 10.1016/S0147-6513(02)00133-1. PubMed DOI

Herrman JL, Younes M. Background to the ADI/TDI/PTWI. Regul Toxicol Pharm. 1999;30:S109–S113. doi: 10.1006/rtph.1999.1335. PubMed DOI

Isildak Ö, Turkekul I, Elmastas M, Tuzen M. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 2004;86:547–552. doi: 10.1016/j.foodchem.2003.09.007. DOI

Isildak Ö, Turkekul I, Elmastas M, Aboul-Enein HY. Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett. 2007;40:1099–1116. doi: 10.1080/00032710701297042. DOI

Işiloǧlu M, Yilmaz F, Merdivan M. Concentrations of trace elements in wild edible mushrooms. Food Chem. 2001;73:169–175. doi: 10.1016/S0308-8146(00)00257-0. DOI

Işiloǧlu M, Merdivan M, Yilmaz F. Heavy metal contents in some macrofungi collected in the northwestern part of Turkey. Arch Environ Con Tox. 2001;41:1–7. doi: 10.1007/s002440010215. PubMed DOI

Johansson EM, Fransson PMA, Finlay RD, van Hees PAW. Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem. 2008;40:2225–2236. doi: 10.1016/j.soilbio.2008.04.016. DOI

Kalač P. Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem. 2009;113:9–16. doi: 10.1016/j.foodchem.2008.07.077. DOI

Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI

Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–281. doi: 10.1016/S0308-8146(99)00264-2. DOI

Kalač P, Svoboda L, Havlíčková B. Contents of cadmium and mercury in edible mushrooms. J Appl Biomed. 2004;2:15–20. doi: 10.32725/jab.2004.002. DOI

Karadeniz Ö, Yaprak G. 137Cs, 40K, alkali-alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. J Radioanal Nucl Ch. 2010;285:611–619. doi: 10.1007/s10967-010-0575-8. DOI

Kojta AK, Falandysz J. Soil-to-mushroom transfer and diversity in total mercury content in two edible Laccaria mushrooms. Environ Earth Sci. 2016;75:1264. doi: 10.1007/s12665-016-6072-9. DOI

Komárek M, Chrastný V, Štíchová J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ Int. 2007;33:677–684. doi: 10.1016/j.envint.2007.02.001. PubMed DOI

Konuk M, Afyon A, Yaǧiz D (2006) Chemical composition of some naturally growing and edible mushrooms. Pak J Bot 38:799-804. http://www.pakbs.org/pjbot/PDFs/38(3)/PJB38(3)799.pdf. Accessed 24 Aug 2019

Koroleva Y, Vakhranyova,O, Okhrimenko M (2015) Accumulation of trace elements by wild mushrooms in West part of Russia (South-Eastern Baltic). Pollution Atmosphérique 226:1-11. 10.4267/pollution-atmospherique.4989

Kosanić M, Ranković B, Rančić A, Stanojković T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal. 2016;24:477–484. doi: 10.1016/j.jfda.2016.01.008. PubMed DOI PMC

Krasińska G, Falandysz J. Mercury in Hazel Bolete Leccinum griseum and soil substratum: distribution, bioconcentration and dietary exposure. J Environ Sci Heal A. 2015;50:1259–1264. doi: 10.1080/10934529.2015.1055151. PubMed DOI

Krasińska G, Falandysz J. Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers. Environ Sci Pollut Res. 2016;23:860–869. doi: 10.1007/s11356-015-5331-8. PubMed DOI PMC

Krpata D, Fitz W, Peintner U, Langer I, Schweiger P. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environ Pollut. 2009;157:280–286. doi: 10.1016/j.envpol.2008.06.038. PubMed DOI

Krupa P, Kozdrój J. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microb Biot. 2004;20:427–430. doi: 10.1023/B:WIBI.0000033067.64061.f3. DOI

Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J. On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater. 2014;280:79–88. doi: 10.1016/j.jhazmat.2014.07.050. PubMed DOI

Kula İ, Solak MH, Uğurlu M, Işiloǧlu M, Arslan Y. Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muǧa, Turkey. B Environ Contam Tox. 2011;87:276–281. doi: 10.1007/s00128-011-0357-1. PubMed DOI

Larsen EH, Andersen NL, Møller A, Petersen A, Mortensen GK, Petersen J. Monitoring the content and intake of trace elements from food in Denmark. Food Addit Contam. 2002;19:33–46. doi: 10.1080/02652030110087447. PubMed DOI

Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics. 2014;6:1693. doi: 10.1039/C4MT00141A. PubMed DOI

Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem. 2014;158:207–215. doi: 10.1016/j.foodchem.2014.02.081. PubMed DOI

Llorente-Mirandes T, Llorens-Muñoz M, Funes-Collado V, Sahuquillo À, López-Sánchez JF. Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chem. 2016;194:849–856. doi: 10.1016/j.foodchem.2015.08.047. PubMed DOI

Lodenius M, Soltanpour-Gargari A, Tulisalo E. Cadmium in forest mushrooms after application of wood ash. B Environ Contam Tox. 2002;68:211–216. doi: 10.1007/s001280240. PubMed DOI

Maćkiewicz D, Falandysz J. Total mercury in Yellow Knights (Tricholoma equstre) mushrooms and beneath soils. Bull Environ Contam Toxicol. 2012;89:755–758. doi: 10.1007/s00128-012-0757-x. PubMed DOI PMC

Malinowska E, Szefer P, Falandysz J. Metals biaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem. 2004;84:405–416. doi: 10.1016/S0308-8146(03)00250-4. DOI

Malinowska E, Szefer P, Bojanowski R. Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem. 2006;97:19–24. doi: 10.1016/j.foodchem.2005.02.048. DOI

Marzano FN, Bracchi PG, Pizzetti P. Radioactive and conventional pollutants accumulated by edible mushrooms (Boletus sp.) are useful indicators of species origin. Environ Res. 2001;85:260–264. doi: 10.1006/enrs.2001.4233. PubMed DOI

Mattila P, Ko K. Contents of vitamins, mineral elements , and some phenolic compounds in cultivated mushrooms. J Agr Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI

Melgar MJ, Alonso J, García MA. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci Total Environ. 2007;385:12–19. doi: 10.1016/j.scitotenv.2007.07.011. PubMed DOI

Melgar MJ, Alonso J, García MA. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ. 2009;407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001. PubMed DOI

Melgar MJ, Alonso J, García MA. Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain) Food Chem Toxicol. 2014;73:44–50. doi: 10.1016/j.fct.2014.08.003. PubMed DOI

Melgar MJ, Alonso J, García MA. Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016;88:13–20. doi: 10.1016/j.fct.2015.12.002. PubMed DOI

Mendil D, Uluözlü ÖD, Hasdemir E, Çaǧlar A. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem. 2004;88:281–285. doi: 10.1016/j.foodchem.2004.01.039. DOI

Mendil D, Uluözlü ÖD, Tüzen M, Hasdemir E, Sari H. Trace metal levels in mushroom samples from Ordu, Turkey. Food Chem. 2005;91:463–467. doi: 10.1016/j.foodchem.2004.06.028. DOI

Mietelski JW, Baeza AS, Guillen J, Buzinny M, Tsigankov N, Gaca P, Jasińska M, Tomankiewicz E. Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Appl Radiat Isotopes. 2002;56:717–729. doi: 10.1016/S0969-8043(01)00281-0. PubMed DOI

Miklavčič A, Mazej D, Jaćimović R, Dizdareviǒ T, Horvat M. Mercury in food items from the Idrija Mercury Mine area. Environ Res. 2013;125:61–68. doi: 10.1016/j.envres.2013.02.008. PubMed DOI

Milinkovic M, Raicevic V, Lalevic B, Golubovic Curguz V, Jovanovic L (2012) Content of heavy metals in carpophores of wild mushroom (Boletus edulis). Proceedings of 6th Central European Congress on Food, Novi Sad, Serbia, pp 378-381. http://www.fins.uns.ac.rs/uploads/zbornici/CEFood-proceedings2012.pdf. Accessed 24 August 2019

Mirończuk-Chodakowska I, Socha K, Witkowska A, Zujko M, Borawska M. Cadmium and lead in wild edible mushrooms from the Eastern Region of Poland's ‘green lungs’. Pol J Environ Stud. 2013;22:1759–1765.

Mititelu M, Nicolescip TO, Ionita CA, Nicolescu F (2012) Heavy metals analysis of some wild edible mushrooms. J Environ Prot Ecol 13:875-879. https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4Ojc4ZTY5ZTc2OTg2ZjNkMDc. Accessed 24 Aug 2019

Mleczek M, Magdziak Z, Gąsecka M, Niedzielski P, Kalač P, Siwulski M, Rzymski P, Zalicka S, Sobieralski K. Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible musroom Boletus edulis (Fr.) Fr. from unpolluted and polluted areas. Environ Sci Pollut Res. 2016;23:20609–20618. doi: 10.1007/s11356-016-7222-z. PubMed DOI PMC

Mogîldea D (2016) Bioaccumulation of toxic heavy metals in mushrooms - a review. Oltenia Journal for Studies in Natural Sciences 32:157-163. http://biozoojournals.ro/oscsn/cont/32_2/22_Mogaldea.pdf. Accessed 24 Aug 2019

Moilanen M, Fritze H, Nieminen M, Piirainen S, Issakainen J, Piispanen J. Does wood ash application increase heavy metal accumulation in forest berries and mushrooms? Forest Ecol Manag. 2006;226:153–160. doi: 10.1016/j.foreco.2006.01.033. DOI

Moreno-Rojas R, Díaz-Valverde MA, Arroyo BM, González TJ, Capote CJB. Mineral content of gurumelo (Amanita ponderosa) Food Chem. 2004;85:325–330. doi: 10.1016/S0308-8146(03)00264-4. DOI

Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV. AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol. 2004;164:297–303. doi: 10.1111/j.1469-8137.2004.01190.x. PubMed DOI

Nagy B, Szilagyi B, Majdik C, Katona G, Indolean C, Măicăneanu A. Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: equilibrium isotherm and kinetic studies. Environmental Progress & Sustainable Energy. 2014;33:1158–1170. doi: 10.1002/ep11897. DOI

Nikkarinen M, Mertanen E. Impact of geological origin on trace element composition of edible mushrooms. J Food Compos Anal. 2004;17:301–310. doi: 10.1016/j.jfca.2004.03.013. DOI

Nováčková J, Fiala P, Chrastný V, Svoboda L, Kalač P (2007) Contents of mercury, cadmium and lead in edible mushrooms and in underlying substrates from a rural area with an occurrence of serpentines and amphiboles. Ekol Bratislava 26:322-329. http://147.213.211.222/node/2317. Accessed 24 Aug 2019

Omil B, Piñeiro V, Merino A. Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Sci Total Environ. 2007;381:157–168. doi: 10.1016/j.scitotenv.2007.04.004. PubMed DOI

Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P. Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol. 2011;190:916–926. doi: 10.1111/j.1469-8137.2010.03634.x. PubMed DOI

Ostos C, Pérez-Rodríguez F, Arroyo BM, Moreno-Rojas R. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. J Food Compos Anal. 2015;37:136–142. doi: 10.1016/j.jfca.2014.04.014. DOI

Ott T, Fritz E, Polle A, Schützendübel A. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol. 2002;42:359–366. doi: 10.1016/S0168-6496(02)00328-8. PubMed DOI

Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA. Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal. 2007;20:480–486. doi: 10.1016/j.jfca.2007.02.008. DOI

Ouzouni PK, Petridis D, Koller WD, Riganakos KA. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009;115:1575–1580. doi: 10.1016/j.foodchem.2009.02.014. DOI

Özcan MM, Dursun N, Al Juhaimi FY. Heavy metals intake by cultured mushrooms growing in model system. Environl Monit Assess. 2013;185:8393–8397. doi: 10.1007/s10661-013-3181-8. PubMed DOI

Ozturk I, Sahan S, Sahin U, Ekici L, Sagdic O. Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean Region. J Verbrauch Lebens. 2010;5:453–457. doi: 10.1007/s00003-010-0625-8. DOI

Perkiömäki J, Kiikkilä O, Moilanen M, Issakainen J, Tervahauta A, Fritze H. Cadmium-containing wood ash in a pine forest: effects on humus microflora and cadmium concentrations in mushrooms, berries, and needles. Can J Forest Res. 2003;33:2443–2451. doi: 10.1139/x03-169. DOI

Petkovšek SAS, Pokorny B. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci Total Environ. 2013;443:944–954. doi: 10.1016/j.scitotenv.2012.11.007. PubMed DOI

Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. B Environ Contam Tox. 2010;84:641–646. doi: 10.1007/s00128-010-9976-1. PubMed DOI

Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VG (2010b) Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Rom Biotech Lett 15:5444-5456. https://e-repository.org/rbl/vol.15/iss.4/11.pdf. Accessed 24 Aug 2019

Radulescu C, Stihi C, Popescu IV, Busuioc G, Gheboianu AI, Cimpoca VG, Dulamă ID, Diaconescu M (2010c) Determination of heavy metals content in wild mushr ooms and soil by EDXRF and FAAS techniques. Ovidius University Annals of Chemistry 21:9-14. http://anale-chimie.univ-ovidius.ro/anale-chimie/chemistry/2010-1/full/2_Radulescu.pdf. Accessed 24 Aug 2019

Rakić M, Karaman M, Forkapić S, Hansman J, Kebert M, Bikit K, Mrdja D. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut R. 2014;21:11283–11292. doi: 10.1007/s11356-014-2967-8. PubMed DOI

Řanda Z, Kučera J. Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Ch. 2004;259:99–107. doi: 10.1023/B:JRNC.0000015813.27926.32. DOI

Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut. 2011;159:2861–2869. doi: 10.1016/j.envpol.2011.04.040. PubMed DOI

Román M, Boa E, Woodward S. Wild-gathered fungi for health and rural livelihoods. P Nutr Soc. 2006;65:190–197. doi: 10.1079/pns2006491. PubMed DOI

Rudawska M, Leski T. Macro- and microelemnt contents in fruting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem. 2005;92:499–506. doi: 10.1016/j.foodchem.2004.08.017. DOI

Rudawska M, Leski T. Trace elemnts in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Sci Total Environ. 2005;399:103–115. doi: 10.1016/j.scitotenv.2004.08.002. PubMed DOI

Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics. 2013;5:1225–1233. doi: 10.1039/c3mt00061c. PubMed DOI

Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol. 2014;67:3–14. doi: 10.1016/j.fgb.2014.03.003. PubMed DOI

Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Rusula atropurpurea. Biometals. 2016;29:349–363. doi: 10.1007/s10534-016-9920-x. PubMed DOI

Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol. 2010;48:1230–1233. doi: 10.1016/j.fct.2009.12.033. PubMed DOI

Sarikurkcu C, Copur M, Yildiz D, Akata I. Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem. 2011;128:731–734. doi: 10.1016/j.foodchem.2011.03.097. DOI

Sarikurkcu C, Tepe B, Solak MH, Cetinkaya S. Metal concentrations of wild edible ushrooms from Turkey. Ecolo Food Nutr. 2012;51:346–363. doi: 10.1080/03670244.2012.674448. PubMed DOI

Sarikurkcu C, Tepe B, Kocak MS, Uren MC. Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015;175:549–555. doi: 10.1016/j.foodchem.2014.12.019. PubMed DOI

Schlecht MT, Säumel I. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ Pollut. 2015;204:298–305. doi: 10.1016/j.envpol.2015.05.018. PubMed DOI

Şen I, Alli H, Çöl B. Boron contents of some wild-growing mushrooms collected from the vicinity of boron mines in Balikesir, Turkey. Biol Trace Elem Res. 2012;145:233–239. doi: 10.1007/s12011-011-9170-2. PubMed DOI

Sesli E (2006) Trace element contents of some selected fungi in the ecosystem of Turkey. Fresen Environ Bull 15:518-523. https://www.prt-parlar.de/download_feb_2006/. Accessed 24 Aug 2019

Sesli E, Dalman Ö (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize Province of Turkey. Asian J Chem 18:2179-2184. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx? ArticleID=18_3_73.Accessed 24 Aug 2019

Sesli E, Tuzen M (2006) Micro- and macroelement contents of edible, wild growing mushrooms in Artvin Province of Turkey. Asian J Chem 18:1423-1429. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx? ArticleID=18_2_101. Accessed 24 August 2019

Sesli E, Tuzen M, Soylak M. Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater. 2008;160:462–467. doi: 10.1016/j.jhazmat.2008.03.020. PubMed DOI

Severoglu Z, Sumer S, Yalcin B, Leblebici Z, Aksoy A. Trace metal levels in edible wild fungi. Int J Environ Sci Te. 2013;10:295–304. doi: 10.1007/s13762-012-0139-2. DOI

Širić I, Kos I, Bedeković D, Kaić A, Kasap A (2014) Heavy metals in edible mushroom Boletus reticulatus Schaeff. Collected from Zrin mountain, Croatia. Period Biol 116:319-322. Retrieved from https://hrcak.srce.hr/file/199348. Accessed 24 Aug 2019

Širić I, Humar M, Kasap A, Kos I, Mioč B, Pohleven F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ Sci Pollut R. 2016;23:18239–18252. doi: 10.1007/s11356-016-7027-0. PubMed DOI

Širić I, Kasap A, Kos I, Markota T, Tomić D, Poljak M (2016b) Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Šumar List 140:29-37. https://www.sumari.hr/sumlist/pdf/201600290.pdf. Accessed 24 Aug 2019

Sivrikaya H, Bacak L, Saraçbaşı A, Toroğlu I, Eroğlu H. Trace elements in Pleurotus sajor-caju cultivated on chemithermomechanical pulp for bio-bleaching. Food Chem. 2002;79:173–176. doi: 10.1016/S0308-8146(02)00128-0. DOI

Škrbić B, Milovac S, Matavulj M. Multielement profiles of soil, road dust, tree bark and wood-rotten fungi collected at various distances from high-frequency road in urban area. Ecol Indic. 2012;13:168–177. doi: 10.1016/j.ecolind.2011.05.023. DOI

Slávik M, Tóth T, Harangozo Ľ, Árvay J, Stanovič R, Miššík J (2013) The content of mercury in edible mushrooms from Middle Spiš area. J Microbiol Biotechn Food Sci 2:2115-2124. https://www.jmbfs.org/wp-content/uploads/2013/06/114_jmbs_slavik_fbp_f.pdf. Accessed 24 Aug 2019

Soeroes C, Kienzl N, Ipolyi I, Dernovics M, Fodor P, Kuehnelt D. Arsenic uptake and arsenic compounds in cultivated Agaricus bisporus. Food Control. 2005;16:459–464. doi: 10.1016/j.foodcont.2004.05.007. DOI

Soylak M, Saraçoǧlu S, Tüzen M, Mendil D. Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem. 2005;92:649–652. doi: 10.1016/j.foodchem.2004.08.032. DOI

Stefanović V, Trifković J, Djurdjić S, Vukojević V, Tešić Ž, Mutić J. Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environ Sci Pollut R. 2016;23:22084–22098. doi: 10.1007/s11356-016-7450-2. PubMed DOI

Stefanović V, Trifković J, Mutić J, Tešić Ž. Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia) Environ Sci Pollut R. 2016;23:13178–13190. doi: 10.1007/s11356-016-6486-7. PubMed DOI

Stihi C, Busuioc G, Radulescu C, Elekes C, Ciulei S (2011) Determination of Fe and Zn accumulation in leafy vegetables and mushrooms using energy dispersive X-Ray fluorescence technique. Bulletin UASVM Agriculture 68:143-147. https://journals.usamvcluj.ro/index.php/agriculture/article/view/6539. Accessed 24 Aug 2019

Svoboda L, Chrastný V. Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam A. 2008;25:51–58. doi: 10.1080/02652030701458519. PubMed DOI

Svoboda L, Kalač P. Contamination of two edible Agaricus spp. mushrooms growing in a town with cadmium, lead, and mercury. B Environ Contam Tox. 2003;71:123–130. doi: 10.1007/s00128-003-0138-6. PubMed DOI

Svoboda L, Kalač P, Špička J, Janoušková D. Leaching of cadmium, lead and mercury from fresh and differently preserved edible mushroom, Xerocomus badius, during soaking and boiling. Food Chem. 2002;79:41–45. doi: 10.1016/S0308-8146(02)00175-9. DOI

Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96:580–585. doi: 10.1016/j.foodchem.2005.03.012. DOI

Świsłowski P, Rajfur M. Bioaccumulation of elements in mushrooms - review of selected literature (in polish) Proc ECOpole. 2017;11:591–599. doi: 10.2429/proc.2017.11(2)067. DOI

Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25:557–568. doi: 10.1515/eces-2018-0037. DOI

Tasdemir G, Yamac M, Cabuk A, Yildiz Z (2008) Selection of newly isolated mushroom strains for tolerance and biosorption of zin in vitro. J Microbiol Biotechn 18:483-489. http://www.jmb.or.kr/journal/view.html?book=Journal&tops=&start=0&scale=50&key=all&key_word=&Vol=18&Num=3&PG=&year1=&year2=&sort=publish_Date+desc&aut_box=Y&sub_box=Y&sos_box=&key_box=&pub_box=Y&abs_box=&mod=vol&mnum=1649&multi%5B%5D=2501&multi%5B%5D=752&multi%5B%5D=1800&multi%5B%5D=1614&multi%5B%5D=1630&multi%5B%5D=436&multi%5B%5D=2268&multi%5B%5D=1910&multi%5B%5D=1952&multi%5B%5D=1761&multi%5B%5D=1568&multi%5B%5D=1522&multi%5B%5D=1649&multi%5B%5D=2403&multi%5B%5D=1932&multi%5B%5D=2206&multi%5B%5D=716&multi%5B%5D=2304&multi%5B%5D=574&multi%5B%5D=376&multi%5B%5D=662&multi%5B%5D=1223&multi%5B%5D=1332&multi%5B%5D=2322&multi%5B%5D=848&multi%5B%5D=546&multi%5B%5D=1119&multi%5B%5D=847&multi%5B%5D=1307&multi%5B%5D=2405. Accessed 24 Aug 2019 PubMed

Turkekul I, Elmastas M, Tüzen M. Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem. 2004;84:389–392. doi: 10.1016/S0308-8146(03)00245-0. DOI

Türkmen M, Budur D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018;254:256–259. doi: 10.1016/j.foodchem.2018.02.010. PubMed DOI

Tüzen M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J. 2003;74:289–297. doi: 10.1016/S0026-265X(03)00035-3. DOI

Tüzen M, Soylak M. Mercury contamination in mushroom samples from Tokat, Turkey. B Environ Contam Tox. 2005;74:968–972. doi: 10.1007/s00128-005-0674-3. PubMed DOI

Tüzen M, Sesli E, Soylak M. Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control. 2007;18:806–810. doi: 10.1016/j.foodcont.2006.04.003. DOI

Vaario LM, Pennanen T, Lu J, Palmén J, Stenman J, Leveinen J, Kilpeläinen P, Kitunen V. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. Mycorrhiza. 2015;25:325–334. doi: 10.1007/s00572-014-0615-2. PubMed DOI

Vetter J. Data on sodium content of common edible mushrooms. Food Chem. 2003;81:589–593. doi: 10.1016/S0308-8146(02)00501-0. DOI

Vetter J. Chemical composition of fresh and conserved Agaricus bisporus mushroom. Eur Food Res Technol. 2003;217:10–12. doi: 10.1007/s00217-003-0707-2. DOI

Vetter J. Arsenic content of some edible mushroom species. Eur Food Res Technol. 2004;219:71–74. doi: 10.1007/s00217-004-0905-6. DOI

Vetter J. Lithium content of some common edible wild-growing mushrooms. Food Chem. 2005;90:31–37. doi: 10.1016/j.foodchem.2004.03.019. DOI

Vetter J. Mineral composition of basidiomes of Amanita species. Mycol Res. 2005;109:746–750. doi: 10.1017/S0953756205002455. PubMed DOI

Vetter J, Berta E. Mercury content of the cultivated mushroom Agaricus bisporus. Food Control. 2005;16:113–116. doi: 10.1016/j.foodcont.2003.12.004. DOI

Vinichuk M. Selected metals in various fractions of soil and fungi in a swedish forest. ISRN Ecol. 2012;2012:1–7. doi: 10.5402/2012/521582. DOI

Weeks CA, Croasdale M, Osborne MA, Hewitt L, Miller PF, Robb P, Baxter MJ, Warriss PD, Knowles TG. Multi-element survey of wild edible fungi and blackberries in the UK. Food Addit Contam. 2006;23:140–147. doi: 10.1080/02652030500386184. PubMed DOI

Yaǧiz D, Konuk M, Afyon A, Kök SM (2008) Minor element and heavy metal content of edible wild mushrooms native to Bolu, North-West Turkey. Fres Environ Bull 17:249-252. https://www.prt-parlar.de/download_feb_2008/. Accessed 24 Aug 2019

Yamaç M, Yildiz D, Sarikürkcü C, Çelikkollu M, Solak MH. Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem. 2007;103:263–267. doi: 10.1016/j.foodchem.2006.07.041. DOI

Yeşil ÖF, Yildiz A, Yavuz Ö. Level of heavy metals in some edible and poisonous macrofungi of Diyarbakir Region in Turkey. B Environ Contam Tox. 2004;73:853–861. doi: 10.1007/s00128-004-0505-y. PubMed DOI

Yilmaz F, Isiloglu M, Merdivan M (2003) Heavy metal levels in some macrofungi. Turk J Bot 27:45-56. http://journals.tubitak.gov.tr/botany/issues/bot-03-27-1/bot-27-1-4-0105-6.pdf. Accessed 24 Aug 2019

Zhang D, Frankowska A, Jarzyńska G, Kojta A, Drewnowska M, Wydmańska D, Bielawski L, Wang J, Falandysz J. Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. Afr J Agr Res. 2010;5:3050–3055.

Zhang D, Zhang Y, Morawska E, Bielawski L, Krasińska G, Drewnowska M, Pankavec S, Szymańska K, Falandysz J. Trace elements in Leccinum scabrum mushrooms and topsoils from Kłodzka Dale in Sudety Mountains, Poland. J Mt Sci. 2013;10:621–627. doi: 10.1007/s11629-013-2384-3. DOI

Zimmermannová K, Svoboda L, Kalač P (2001) Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spiš region, Slovakia. Ekol Bratislava 20:440-446. http://147.213.211.222/node/2850. Accessed 24 Aug 2019

Zsigmond AR, Varga K, Harangi S, Baranyai E, Urák I. Elemental profile of edible mushrooms from a forest near a major Romanian city. Acta Universitatis Sapientiae, Agriculture and Environment. 2015;7:98–107. doi: 10.1515/ausae-2015-0009. DOI

Žunić ZS, Mietelski JW, Błażej S, Gaca P, Tomankiewicz E, Ujić P, Čeliković I, Čuknić O, Demajo M. Traces of DU in samples of environmental bio-monitors (non-flowering plants, fungi) and soil from target sites of the Western Balkan region. J Environ Radioactiv. 2008;99:1324–1328. doi: 10.1016/j.jenvrad.2008.04.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...