Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Amanita genetika metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- genetické vektory MeSH
- genová knihovna MeSH
- kadmium metabolismus MeSH
- měď metabolismus MeSH
- metalothionein genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mycelium metabolismus MeSH
- plodnice hub genetika metabolismus MeSH
- protein - isoformy genetika metabolismus MeSH
- Saccharomyces cerevisiae MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- stříbro metabolismus MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- kadmium MeSH
- měď MeSH
- metalothionein MeSH
- protein - isoformy MeSH
- stříbro MeSH
Metallothioneins (MTs) are cysteine-rich peptides involved in heavy metal tolerance of many eukaryotes. Here, we examined their involvement in intracellular binding of silver (Ag) in the ectomycorrhizal fungus Amanita strobiliformis. The Ag complexes and their peptide ligands were characterized using chromatography and mass spectrometry. The full-length coding sequences obtained from a cDNA library were used for complementation assays in yeast mutant strains. Abundance of respective transcripts in A. strobiliformis was measured by quantitative real-time reverse-transcribed polymerase chain reaction (qRT-PCR). Ag-speciation analyses showed that intracellular Ag was in wild-grown fruit bodies and cultured extraradical mycelia of A. strobiliformis sequestered by metallothioneins. The determined sequence of the peptide facilitated isolation of three cDNA clones, AsMT1a, AsMT1b and AsMT1c. These encode isomorphic MTs consisting of 34 amino acid residues and sharing 82% identity. In mycelia the expression of AsMT1s is induced by Ag. All AsMT1s expressed in yeasts complemented hypersensitivity of mutants to cadmium (Cd) and copper (Cu) and formed Ag complexes. Only the Ag-AsMT1a complex was detected in the A. strobiliformis fruit body in which AsMT1a was the prevailing transcript. The present study identified the existence of metallothionein isoforms in ectomycorrhizal fungi. We demonstrated that intracellular sequestration of Ag in fruit bodies and mycelia of hyperaccumulating A. strobiliformis is dominated by metallothioneins.
Zobrazit více v PubMed
Adriaensen K, Vangronsveld J, Colpaert JV. 2006. Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553-558.
Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters 254: 173-181.
Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M. 2007. Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytologist 174: 151-158.
Binz PA, Kägi JHR. 1999. Metallothionein: molecular evolution and classification. In: Klaassen C, ed. Metallothionein, vol. IV. Basel, Switzerland: Birkhäuser-Verlag, 7-13.
Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE. 2010. Bioaccumulation of silver in ectomycorrhizal saprobic macrofungi from pristine and polluted areas. Science of the Total Environment 408: 2733-2744.
Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE. 2007. Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research 111: 1339-1344.
Boyd RS. 2004. Ecology of metal hyperaccumulation. New Phytologist 162: 563-567.
Boyd RS. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil 293: 153-176.
Brooks RR. 1998. General introduction. In: Brooks RR, ed. Plants that hyperaccumulate heavy metals. Wallingford, UK: CABI, 1-14.
Butt TR, Ecker DJ. 1987. Yeast metallothionein and applications in biotechnology. Microbiological Reviews 51: 351-364.
Byrne AR, Tušek-Žnidarič M. 1990. Studies of the uptake and binding of trace metals in fungi. Part I: accumulation and characterization of mercury and silver in the cultivated mushroom, Agaricus bisporus. Applied Organometallic Chemistry 4: 43-48.
Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707-1719.
Clemens S, Simm C. 2003. Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. New Phytologist 159: 323-330.
Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E. 2007. First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99: 161-174.
Colpaert JV, Van Assche JA. 1993. The effect of cadmium on ectomycorrhizal Pinus silvestris L. New Phytologist 123: 325-333.
Cortese-Krott MM, Münchow M, Pirev E, Hessner F, Bozkurt A, Uciechowski P, Pallua N, Kröncke KD, Suschek CV. 2009. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radical Biology & Medicine 47: 1570-1577.
Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P. 2004. Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Applied and Environmental Microbiology 70: 7413-7417.
Coyle P, Philcox JC, Carey LC, Rofe AM. 2002. Metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences 59: 627-647.
Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST. 1986. Yeast metallothionein function in metal detoxification. Journal of Biological Chemistry 261: 16895-16900.
Freisinger E. 2008. Plant MTs-long neglected members of the metallothionein superfamily. Dalton Transactions 47: 6663-6675.
Gadd GM. 2007. Geomycology: biochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathwering and bioremediation. Mycological Research 111: 3-49.
Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 15: 355-360.
Godbold DL, Jentsche G, Winter S, Marschner P. 1998. Ectomycorrhizas and ammelioration of metal stress in forest trees. Chemosphere 36: 757-762.
González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N. 2007. GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17: 327-335.
Gryndler M, Egertová Z, Soukupová L, Gryndlerová H, Borovička J, Hršelová H. 2010. Molecular detection of Entoloma spp. associated with roots of rosaceous woody plants. Mycological Progress 9: 27-36.
Howe R, Evans RL, Ketteridge SW. 1997. Copper-binding proteins in ectomycorrhizal fungi. New Phytologist 135: 123-131.
Jaeckel P, Krauss G, Menge S, Schierhorn A, Rücknagel P, Krauss GJ. 2005. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochemical et Biophysical Research Communications 333: 150-155.
Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M. 2010. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiology 30: 1311-1319.
Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y. 1984. Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast - separation, revision of structures and synthesis. Tetrahedron Letters 25: 3869-3872.
Krämer U. 2010. Metal hyperaccumulation in plants. Annual Reviews of Plant Biology 61: 517-534.
Krznaric E, Verbruggen N, Wevers JH, Carleer R, Vangronsveld J, Colpaert JV. 2009. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environmental Pollution 157: 1581-1588.
Kumar KS, Dayananda S, Subramanyam C. 2005. Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa. FEMS Microbiology Letters 242: 45-50.
Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P. 2002. Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiology 130: 58-67.
Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA. 1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proceedings of the National Academy of Sciences, USA 94: 42-47.
Marx DH. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.
Mehra RK, Tarbet EB, Gray WR, Winge DR. 1988. Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proceedings of the National Academy of Sciences, USA 85: 8815-8819.
Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
Pagani A, Villarreal L, Capdevila M, Atrian S. 2007. The Saccharomyces cerevisiae Crs5 metallothionein metal-binding abilities and its role in the response to zinc overload. Molecular Microbiology 63: 256-269.
Peirson SN, Butler JN, Foster RG. 2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acid Research 31: e73.
Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS. 2009. Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Applied and Environmental Microbiology 75: 2266-2274.
Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53: 1351-1365.
Smith S, Read DJ. 2008. Mycorrhizal symbiosis. Cambridge, UK: Academic Press.
Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ. 1994. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. Journal of Biological Chemistry 269: 22853-22858.
Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ. 1993. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proceedings of the National Academy of Sciences, USA 90: 8013-8017.
Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ. 2004. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16: 1575-1588.
Voiblet C, Duplessis S, Encelot N, Martin F. 2001. Identification of symbiosis-regulated genes in Eucalyptus globules-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant Journal 25: 181-191.
Volf P, Skarupova S, Man P. 2002. Characterization of the lectin from females of Phlebotomus duboscqi sand flies. European Journal of Biochemistry 269: 1-8.
Two P1B-1-ATPases of Amanita strobiliformis With Distinct Properties in Cu/Ag Transport
Genetic transformation of extremophilic fungi Acidea extrema and Acidothrix acidophila