Genetic transformation of extremophilic fungi Acidea extrema and Acidothrix acidophila
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Agrobacterium tumefaciens genetika MeSH
- Amanita genetika MeSH
- Ascomycota genetika MeSH
- exprese genu MeSH
- genetické vektory MeSH
- koncentrace vodíkových iontů MeSH
- metalothionein genetika MeSH
- plazmidy MeSH
- promotorové oblasti (genetika) MeSH
- terminace genetické transkripce MeSH
- transformace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- metalothionein MeSH
Intact, growing cells of strongly acidophilic fungi Acidea extrema and Acidothrix acidophila have been successfully transformed by introduction of heterologous DNA fragment (composed of the glyceraldehyde-phosphate-dehydrogenase gene promoter from Emericella nidulans, a metallothionein-coding gene AsMt1 from Amanita strobiliformis and glyceraldehyde-phosphate-dehydrogenase gene terminator from Colletotrichum gloeosporioides) with the length of 1690 bp. The transformation procedure was based on the DNA transfer mediated by Agrobacterium tumefaciens bearing disarmed helper plasmid pMP90 and binary vector pCambia1300 with inserted DNA fragment of interest. The transformants proved to be mitotically stable, and the introduced gene was expressed at least at the level of transcription. Our work confirms that metabolic adaptations of strongly acidophilic fungi do not represent an obstacle for genetic transformation using conventional methods and can be potentially used for production of heterologous proteins. A promising role of the fast growing A. acidophila as active biomass in biotechnological processes is suggested not only by the low susceptibility of the culture grown at low pH to contaminations but also by reduced risk of accidental leaks of genetically modified microorganisms into the environment because highly specialized extremophilic fungi can poorly compete with common microflora under moderate conditions.
Zobrazit více v PubMed
New Phytol. 2011 Jun;190(4):916-26 PubMed
FEMS Microbiol Ecol. 2010 Jan;71(1):2-11 PubMed
Trends Biotechnol. 2002 May;20(5):200-6 PubMed
Int Microbiol. 2003 Sep;6(3):191-9 PubMed
Nat Biotechnol. 1998 Sep;16(9):839-42 PubMed
EMBO J. 1995 Jul 3;14(13):3206-14 PubMed
BMC Biotechnol. 2010 Sep 14;10 :67 PubMed
Mol Gen Genet. 1990 Jan;220(2):314-6 PubMed
New Phytol. 2007;174(1):151-8 PubMed
BMC Genomics. 2013 Sep 13;14:617 PubMed
J Appl Microbiol. 2002;92(2):189-95 PubMed
Mycol Res. 2007 Nov;111(Pt 11):1339-44 PubMed
Bioengineered. 2012 Sep-Oct;3(5):293-7 PubMed
Appl Environ Microbiol. 1995 Feb;61(2):610-6 PubMed
Front Microbiol. 2014 May 05;5:199 PubMed
Mycol Res. 2003 Jul;107(Pt 7):803-10 PubMed
J Microbiol Methods. 2011 Dec;87(3):247-62 PubMed