FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
207455/Z/17/Z
Wellcome Trust - United Kingdom
MC_UP_1201/16
Medical Research Council - United Kingdom
R35 GM134855
NIGMS NIH HHS - United States
PubMed
35486718
PubMed Central
PMC9054013
DOI
10.1126/sciadv.abn2018
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
CIMR University of Cambridge Biomedical Campus Hills Road Cambridge CB2 0XY UK
Kennedy Institute of Rheumatology University of Oxford Roosevelt Drive Oxford OX3 7FY UK
Max Planck Institute of Biochemistry 82152 Martinsried Germany
Zobrazit více v PubMed
Bitsikas V., Correa I. R. Jr., Nichols B. J., Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3, e03970 (2014). PubMed PMC
Bayati A., Kumar R., Francis V., McPherson P. S., SARS-CoV-2 infects cells following viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306 (2021). PubMed PMC
Yamauchi Y., Helenius A., Virus entry at a glance. J. Cell Sci. 126, 1289–1295 (2013). PubMed
Anderson R. G., Brown M. S., Goldstein J. L., Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10, 351–364 (1977). PubMed
Sochacki K. A., Heine B. L., Haber G. J., Jimah J. R., Prasai B., Alfonzo-Méndez M. A., Roberts A. D., Somasundaram A., Hinshaw J. E., Taraska J. W., The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Dev. Cell 56, 1131–1146.e3 (2021). PubMed PMC
Borner G. H. H., Antrobus R., Hirst J., Bhumbra G. S., Kozik P., Jackson L. P., Sahlender D. A., Robinson M. S., Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197, 141–160 (2012). PubMed PMC
Motley A., Bright N. A., Seaman M. N., Robinson M. S., Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003). PubMed PMC
Mitsunari T., Nakatsu F., Shioda N., Love P. E., Grinberg A., Bonifacino J. S., Ohno H., Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol. 25, 9318–9323 (2005). PubMed PMC
Chen Z., Schmid S. L., Evolving models for assembling and shaping clathrin-coated pits. J. Cell Biol. 219, e202005126 (2020). PubMed PMC
Collins B. M., McCoy A. J., Kent H. M., Evans P. R., Owen D. J., Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002). PubMed
Hollopeter G., Lange J. J., Zhang Y., Vu T. N., Gu M., Ailion M., Lambie E. J., Slaughter B. D., Unruh J. R., Florens L., Jorgensen E. M., The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. eLife 3, e03648 (2014). PubMed PMC
Jackson L. P., Kelly B. T., McCoy A. J., Gaffry T., James L. C., Collins B. M., Höning S., Evans P. R., Owen D. J., A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010). PubMed PMC
Kelly B. T., Graham S. C., Liska N., Dannhauser P. N., Höning S., Ungewickell E. J., Owen D. J., AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459–463 (2014). PubMed PMC
Kovtun O., Dickson V. K., Kelly B. T., Owen D. J., Briggs J. A. G., Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Sci. Adv. 6, eaba8381 (2020). PubMed PMC
Ma L., Umasankar P. K., Wrobel A. G., Lymar A., McCoy A. J., Holkar S. S., Jha A., Pradhan-Sundd T., Watkins S. C., Owen D. J., Traub L. M., Transient Fcho1/2⋅Eps15/R⋅AP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37, 428–443 (2016). PubMed PMC
Lehmann M., Lukonin I., Noé F., Schmoranzer J., Clementi C., Loerke D., Haucke V., Nanoscale coupling of endocytic pit growth and stability. Sci. Adv. 5, eaax5775 (2019). PubMed PMC
Traub L. M., A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation. eLife 8, e41768 (2019). PubMed PMC
Thul P. J., Lindskog C., The human protein atlas: A spatial map of the human proteome. Protein Sci. 27, 233–244 (2018). PubMed PMC
Uezu A., Umeda K., Tsujita K., Suetsugu S., Takenawa T., Nakanishi H., Characterization of the EFC/F-BAR domain protein, FCHO2. Genes Cells 16, 868–878 (2011). PubMed
Katoh M., Katoh M., Identification and characterization of human FCHO2 and mouse Fcho2 genes in silico. Int. J. Mol. Med. 14, 327–331 (2004). PubMed
Uezu A., Horiuchi A., Kanda K., Kikuchi N., Umeda K., Tsujita K., Suetsugu S., Araki N., Yamamoto H., Takenawa T., Nakanishi H., SGIP1alpha is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem. 282, 26481–26489 (2007). PubMed
Calzoni E., Platt C. D., Keles S., Kuehn H. S., Beaussant-Cohen S., Zhang Y., Pazmandi J., Lanzi G., Pala F., Tahiat A., Artac H., Heredia R. J., Dmytrus J., Reisli I., Uygun V., Uygun D., Bingol A., Basaran E., Djenouhat K., Benhalla N., Bendahmane C., Emiroglu M., Kirchhausen T., Pasham M., Jones J., Wallace J. G., Zheng L., Boisson B., Porta F., Rosenzweig S. D., Su H., Giliani S., Lenardo M., Geha R. S., Boztug K., Chou J., Notarangelo L. D., F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. J. Allergy Clin. Immunol. 143, 2317–2321.e12 (2019). PubMed PMC
Łyszkiewicz M., Ziętara N., Frey L., Pannicke U., Stern M., Liu Y., Fan Y., Puchałka J., Hollizeck S., Somekh I., Rohlfs M., Yilmaz T., Ünal E., Karakukcu M., Patiroğlu T., Kellerer C., Karasu E., Sykora K.-W., Lev A., Simon A., Somech R., Roesler J., Hoenig M., Keppler O. T., Schwarz K., Klein C., Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat. Commun. 11, 1031 (2020). PubMed PMC
Henne W. M., Boucrot E., Meinecke M., Evergren E., Vallis Y., Mittal R., McMahon H. T., FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010). PubMed PMC
Mulkearns E. E., Cooper J. A., FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis. Mol. Biol. Cell 23, 1330–1342 (2012). PubMed PMC
Umasankar P. K., Ma L., Thieman J. R., Jha A., Doray B., Watkins S. C., Traub L. M., A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. eLife 3, e04137 (2014). PubMed PMC
Umasankar P. K., Sanker S., Thieman J. R., Chakraborty S., Wendland B., Tsang M., Traub L. M., Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat. Cell Biol. 14, 488–501 (2012). PubMed PMC
Wang X., Chen Z., Mettlen M., Noh J., Schmid S. L., Danuser G., DASC, a sensitive classifier for measuring discrete early stages in clathrin-mediated endocytosis. eLife 9, e53686 (2020). PubMed PMC
Henne W. M., Kent H. M., Ford M. G. J., Hegde B. G., Daumke O., Butler P. J. G., Mittal R., Langen R., Evans P. R., McMahon H. T., Structure and analysis of FCHo2 F-BAR domain: A dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007). PubMed
Edeling M. A., Mishra S. K., Keyel P. A., Steinhauser A. L., Collins B. M., Roth R., Heuser J. E., Owen D. J., Traub L. M., Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006). PubMed
Sochacki K. A., Dickey A. M., Strub M. P., Taraska J. W., Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017). PubMed PMC
Tebar F., Sorkina T., Sorkin A., Ericsson M., Kirchhausen T., Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996). PubMed
Taylor M. J., Perrais D., Merrifield C. J., A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). PubMed PMC
Cheng Y., Boll W., Kirchhausen T., Harrison S. C., Walz T., Cryo-electron tomography of clathrin-coated vesicles: Structural implications for coat assembly. J. Mol. Biol. 365, 892–899 (2007). PubMed PMC
Guo Y., Li D., Zhang S., Yang Y., Liu J.-J., Wang X., Liu C., Milkie D. E., Moore R. P., Tulu U. S., Kiehart D. P., Hu J., Lippincott-Schwartz J., Betzig E., Li D., Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e17 (2018). PubMed
Day K. J., Kago G., Wang L., Richter J. B., Hayden C. C., Lafer E. M., Stachowiak J. C., Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat. Cell Biol. 23, 366–376 (2021). PubMed PMC
Kukulski W., Schorb M., Kaksonen M., Briggs J. A., Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508–520 (2012). PubMed
Willy N. M., Ferguson J. P., Akatay A., Huber S., Djakbarova U., Silahli S., Cakez C., Hasan F., Chang H. C., Travesset A., Li S., Zandi R., Li D., Betzig E., Cocucci E., Kural C., De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev. Cell 56, 3146–3159.e5 (2021). PubMed
Saffarian S., Kirchhausen T., Differential evanescence nanometry: Live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys. J. 94, 2333–2342 (2008). PubMed PMC
Quinones G. A., Oro A. E., BAR domain competition during directional cellular migration. Cell Cycle 9, 2522–2528 (2010). PubMed PMC
Paraan M., Mendez J., Sharum S., Kurtin D., He H., Stagg S. M., The structures of natively assembled clathrin-coated vesicles. Sci. Adv. 6, eaba8397 (2020). PubMed PMC
Joseph B. B., Wang Y., Edeen P., Lažetić V., Grant B. D., Fay D. S., Control of clathrin-mediated endocytosis by NIMA family kinases. PLOS Genet. 16, e1008633 (2020). PubMed PMC
Singh R., Stoneham C., Lim C., Jia X., Guenaga J., Wyatt R., Wertheim J. O., Xiong Y., Guatelli J., Phosphoserine acidic cluster motifs bind distinct basic regions on the μ subunits of clathrin adaptor protein complexes. J. Biol. Chem. 293, 15678–15690 (2018). PubMed PMC
McCoy A. J., Acknowledging errors: Advanced molecular replacement with phaser. Methods Mol. Biol. 1607, 421–453 (2017). PubMed
Drozdetskiy A., Cole C., Procter J., Barton G. J., JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015). PubMed PMC
St-Denis N., Gabriel M., Turowec J. P., Gloor G. B., Li S. S. C., Gingras A. C., Litchfield D. W., Systematic investigation of hierarchical phosphorylation by protein kinase CK2. J. Proteome 118, 49–62 (2015). PubMed
Owen D. J., Evans P. R., A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998). PubMed PMC
Wrobel A. G., Kadlecova Z., Kamenicky J., Yang J. C., Herrmann T., Kelly B. T., McCoy A. J., Evans P. R., Martin S., Müller S., Salomon S., Sroubek F., Neuhaus D., Höning S., Owen D. J., Temporal ordering in endocytic clathrin-coated vesicle formation via ap2 phosphorylation. Dev. Cell 52, 673 (2020). PubMed PMC
van Rosmalen M., Krom M., Merkx M., Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry 56, 6565–6574 (2017). PubMed PMC
Brett T. J., Traub L. M., Fremont D. H., Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002). PubMed
Owen D. J., Vallis Y., Noble M. E. M., Hunter J. B., Dafforn T. R., Evans P. R., McMahon H. T., A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 97, 805–815 (1999). PubMed
Praefcke G. J. K., Ford M. G. J., Schmid E. M., Olesen L. E., Gallop J. L., Peak-Chew S.-Y., Vallis Y., Babu M. M., Mills I. G., McMahon H. T., Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004). PubMed PMC
Wernick N. L., Haucke V., Simister N. E., Recognition of the tryptophan-based endocytosis signal in the neonatal Fc receptor by the mu subunit of adaptor protein-2. J. Biol. Chem. 280, 7309–7316 (2005). PubMed
De Franceschi N., Arjonen A., Elkhatib N., Denessiouk K., Wrobel A. G., Wilson T. A., Pouwels J., Montagnac G., Owen D. J., Ivaska J., Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat. Struct. Mol. Biol. 23, 172–179 (2016). PubMed PMC
Takamori S., Holt M., Stenius K., Lemke E. A., Grønborg M., Riedel D., Urlaub H., Schenck S., Brügger B., Ringler P., Müller S. A., Rammner B., Gräter F., Hub J. S., de Groot B. L., Mieskes G., Moriyama Y., Klingauf J., Grubmüller H., Heuser J., Wieland F., Jahn R., Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006). PubMed
Bhave M., Mino R. E., Wang X., Lee J., Grossman H. M., Lakoduk A. M., Danuser G., Schmid S. L., Mettlen M., Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proc. Natl. Acad. Sci. U.S.A. 117, 31591–31602 (2020). PubMed PMC
Partlow E. A., Baker R. W., Beacham G. M., Chappie J. S., Leschziner A. E., Hollopeter G., A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. eLife 8, e50003 (2019). PubMed PMC
Ehrlich M., Boll W., van Oijen A., Hariharan R., Chandran K., Nibert M. L., Kirchhausen T., Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004). PubMed
Mettlen M., Chen P. H., Srinivasan S., Danuser G., Schmid S. L., Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018). PubMed PMC
Liu T. L., Upadhyayula S., Milkie D. E., Singh V., Wang K., Swinburne I. A., Mosaliganti K. R., Collins Z. M., Hiscock T. W., Shea J., Kohrman A. Q., Medwig T. N., Dambournet D., Forster R., Cunniff B., Ruan Y., Yashiro H., Scholpp S., Meyerowitz E. M., Hockemeyer D., Drubin D. G., Martin B. L., Matus D. Q., Koyama M., Megason S. G., Kirchhausen T., Betzig E., Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018). PubMed PMC
Azarnia Tehran D., Lopez-Hernandez T., Maritzen T., Endocytic adaptor proteins in health and disease: Lessons from model organisms and human mutations. Cell 8, 1345–1397 (2019). PubMed PMC
Schmidt H. B., Gorlich D., Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41, 46–61 (2016). PubMed
Ritter B., Murphy S., Dokainish H., Girard M., Gudheti M. V., Kozlov G., Halin M., Philie J., Jorgensen E. M., Gehring K., McPherson P. S., NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol. 11, e1001670 (2013). PubMed PMC
van Bergen P. M., Eps15: A multifunctional adaptor protein regulating intracellular trafficking. Cell Commun. Signal. 7, 24 (2009). PubMed PMC
Miller S. E., Mathiasen S., Bright N. A., Pierre F., Kelly B. T., Kladt N., Schauss A., Merrifield C. J., Stamou D., Höning S., Owen D. J., CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33, 163–175 (2015). PubMed PMC
Mund M., van der Beek J. A., Deschamps J., Dmitrieff S., Hoess P., Monster J. L., Picco A., Nédélec F., Kaksonen M., Ries J., Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896.e17 (2018). PubMed PMC
Cocucci E., Aguet F., Boulant S., Kirchhausen T., The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012). PubMed PMC
Kadlecova Z., Spielman S. J., Loerke D., Mohanakrishnan A., Reed D. K., Schmid S. L., Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 216, 167–179 (2017). PubMed PMC
Ren X., Park S. Y., Bonifacino J. S., Hurley J. H., How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. eLife 3, e01754 (2014). PubMed PMC
Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F., Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). PubMed PMC
Stemmer M., Thumberger T., Del Sol Keyer M., Wittbrodt J., Mateo J. L., CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE 10, e0124633 (2015). PubMed PMC
Mino R. E., Chen Z., Mettlen M., Schmid S. L., An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic 21, 603–616 (2020). PubMed PMC
Aguet F., Antonescu C. N., Mettlen M., Schmid S. L., Danuser G., Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013). PubMed PMC
Barbieri L., Colin-York H., Korobchevskaya K., Li D., Wolfson D. L., Karedla N., Schneider F., Ahluwalia B. S., Seternes T., Dalmo R. A., Dustin M. L., Li D., Fritzsche M., Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM). Nat. Commun. 12, 2169 (2021). PubMed PMC
Li D., Colin-York H., Barbieri L., Javanmardi Y., Guo Y., Korobchevskaya K., Moeendarbary E., Li D., Fritzsche M., Astigmatic traction force microscopy (aTFM). Nat. Commun. 12, 2168 (2021). PubMed PMC
Gustafsson M. G. L., Shao L., Carlton P. M., Wang C. J. R., Golubovskaya I. N., Cande W. Z., Agard D. A., Sedat J. W., Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008). PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC
Liebschner D., Afonine P. V., Baker M. L., Bunkóczi G., Chen V. B., Croll T. I., Hintze B., Hung L. W., Jain S., McCoy A. J., Moriarty N. W., Oeffner R. D., Poon B. K., Prisant M. G., Read R. J., Richardson J. S., Richardson D. C., Sammito M. D., Sobolev O. V., Stockwell D. H., Terwilliger T. C., Urzhumtsev A. G., Videau L. L., Williams C. J., Adams P. D., Macromolecular structure determination using x-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). PubMed PMC
Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., Read R. J., Vagin A., Wilson K. S., Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011). PubMed PMC
Tegunov D., Cramer P., Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019). PubMed PMC
Punjani A., Zhang H., Fleet D. J., Non-uniform refinement: Adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020). PubMed
Tan Y. Z., Baldwin P. R., Davis J. H., Williamson J. R., Potter C. S., Carragher B., Lyumkis D., Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017). PubMed PMC
Afonine P. V., Poon B. K., Read R. J., Sobolev O. V., Terwilliger T. C., Urzhumtsev A., Adams P. D., Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018). PubMed PMC
Hagen W. J. H., Wan W., Briggs J. A. G., Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017). PubMed PMC
Mastronarde D. N., Held S. R., Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017). PubMed PMC
Grant T., Grigorieff N., Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. eLife 4, e06980 (2015). PubMed PMC
Kremer J. R., Mastronarde D. N., McIntosh J. R., Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). PubMed
Turonova B., Schur F. K. M., Wan W., Briggs J. A. G., Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4A. J. Struct. Biol. 199, 187–195 (2017). PubMed PMC
Castano-Diez D., Kudryashev M., Arheit M., Stahlberg H., Dynamo: A flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012). PubMed
Zivanov J., Nakane T., Forsberg B. O., Kimanius D., Hagen W. J. H., Lindahl E., Scheres S. H. W., New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). PubMed PMC
Qu K., Glass B., Doležal M., Schur F. K. M., Murciano B., Rein A., Rumlová M., Ruml T., Kräusslich H. G., Briggs J. A. G., Structure and architecture of immature and mature murine leukemia virus capsids. Proc. Natl. Acad. Sci. U.S.A. 115, E11751–E11760 (2018). PubMed PMC
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes