Two P1B-1-ATPases of Amanita strobiliformis With Distinct Properties in Cu/Ag Transport

. 2018 ; 9 () : 747. [epub] 20180423

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29740406

As we have shown previously, the Cu and Ag concentrations in the sporocarps of Ag-hyperaccumulating Amanita strobiliformis are correlated, and both metals share the same uptake system and are sequestered by the same metallothioneins intracellularly. To further improve our knowledge of the Cu and Ag handling in A. strobiliformis cells, we searched its transcriptome for the P1B-1-ATPases, recognizing Cu+ and Ag+ for transport. We identified transcripts encoding 1097-amino acid (AA) AsCRD1 and 978-AA AsCCC2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of AsCRD1 conferred highly increased Cu and Ag tolerance to metal sensitive yeasts in which the functional AsCRD1:GFP (green fluorescent protein) fusion localized exclusively to the tonoplast, indicating that the AsCRD1-mediated Cu and Ag tolerance was a result of vacuolar sequestration of the metals. Increased accumulation of AsCRD1 transcripts observed in A. strobiliformis mycelium upon the treatments with Cu and Ag (8.7- and 4.5-fold in the presence of 5 μM metal, respectively) supported the notion that AsCRD1 can be involved in protection of the A. strobiliformis cells against the toxicity of both metals. Neither Cu nor Ag affected the levels of AsCCC2 transcripts. Heterologous expression of AsCCC2 in mutant yeasts did not contribute to Cu tolerance, but complemented the mutant genotype of the S. cerevisiae ccc2Δ strain. Consistent with the role of the yeast Ccc2 in the trafficking of Cu from cytoplasm to nascent proteins via post-Golgi, the GFP fluorescence in AsCCC2-expressing ccc2Δ yeasts localized among Golgi-like punctate foci within the cells. The AsCRD1- and AsCCC2-associated phenotypes were lost in yeasts expressing mutant transporter variants in which a conserved phosphorylation/dephosphorylation site was altered. Altogether, the data support the roles of AsCRD1 and AsCCC2 as genuine P1B-1-ATPases, and indicate their important functions in the removal of toxic excess of Cu and Ag from the cytoplasm and charging the endomembrane system with Cu, respectively.

Zobrazit více v PubMed

Adle D. J., Sinani D., Kim H., Lee J. (2007). A cadmium-transporting P1B-type ATPase in yeast Saccharomycescerevisiae. J. Biol. Chem. 282 947–955. 10.1074/jbc.M609535200 PubMed DOI PMC

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Antsotegi-Uskola M., Markina-Iñarrairaegui A., Ugalde U. (2017). Copper resistance in Aspergillus nidulans relies on the PI-type ATPase CrpA, regulated by the transcription factor AceA. Front. Microbiol. 8:912 10.3389/fmicb.2017.00912 PubMed DOI PMC

Argüello J. M., Eren E., González-Guerrero M. (2007). The structure and function of heavy metal transport P-1B-ATPases. Biometals 20 233–248. 10.1007/s10534-006-9055-6 PubMed DOI

Bashir K., Rasheed S., Kobayashi T., Seki M., Nishizawa N. K. (2016). Regulating subcellular metal homeostasis: the key to crop improvement. Front. Plant Sci. 7:1192. 10.3389/fpls.2016.01192 PubMed DOI PMC

Bellion M., Courbot M., Jacob C., Guinet F., Blaudez D., Chalot M. (2007). Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol. 174 151–158. 10.1111/j.1469-8137.2007.01973.x PubMed DOI

Beneš V., Hložková K., Matěnová M., Borovička J., Kotrba P. (2016). Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals 29 249–264. 10.1007/s10534-016-9912-x PubMed DOI

Bleackley M. R., MacGillivray R. T. (2011). Transition metal homeostasis: from yeast to human disease. Biometals 24 785–809. 10.1007/s10534-011-9451-4 PubMed DOI

Borovička J., Kotrba P., Gryndler M., Mihaljevič M., Řanda Z., Rohovec J., et al. (2010). Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci. Total Environ. 408 2733–2744. 10.1016/j.scitotenv.2010.02.031 PubMed DOI

Borovička J., Řanda Z., Jelínek E., Kotrba P., Dunn C. E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol. Res. 111 1339–1344. 10.1016/j.mycres.2007.08.015 PubMed DOI

Colpaert J. V., Wevers J. H. L., Krznaric E., Adriaensen K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann. For. Sci. 68 17–24. 10.1007/s13595-010-0003-9 DOI

Courty P. E., Hoegger P. J., Kilaru S., Kohler A., Buée M., Garbaye J., et al. (2009). Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol. 182 736–750. 10.1111/j.1469-8137.2009.02774.x PubMed DOI

Devirgiliis C., Murgia C., Danscher G., Perozzi G. (2004). Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 323 58–64. 10.1016/j.bbrc.2004.08.051 PubMed DOI

Dobson L., Reményi I., Tusnády G. E. (2015). CCTOP: A Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 43 W408–W412. 10.1093/nar/gkv451 PubMed DOI PMC

Ellström M., Shah F., Johansson T., Ahrén D., Persson P., Tunlid A. (2015). The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol. Ecol. 91:fiv027. 10.1093/femsec/fiv027 PubMed DOI PMC

Falandysz J., Borovička J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl. Microbiol. Biotechnol. 97 477–501. 10.1007/s00253-012-4552-8 PubMed DOI PMC

Fomina M., Charnock J., Bowen A. D., Gadd G. M. (2007). X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ. Microbiol. 9 308–321. 10.1111/j.1462-2920.2006.01139.x PubMed DOI

Fu D., Beeler T. J., Dunn T. M. (1995). Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca2+-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu2+-ATPase subfamily. Yeast 11 283–292. 10.1002/yea.320110310 PubMed DOI

Füzik T., Ulbrich P., Ruml T. (2014). Efficient mutagenesis independent of ligation (EMILI). J. Microbiol. Methods 106 67–71. 10.1016/j.mimet.2014.08.003 PubMed DOI

Gadd G. M., Rhee Y. J., Stephenson K., Wei Z. (2012). Geomycology: metals, actinides and biominerals. Environ. Microbiol. Rep. 4 270–296. 10.1111/j.1758-2229.2011.00283.x PubMed DOI

González-Guerrero M., Melville L. H., Ferrol N., Lott J. N. A., Azcón-Aguilar C., Peterson R. L. (2008). Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can. J. Microbiol. 54 103–110. 10.1139/w07-119 PubMed DOI

Gostinčar C., Muggia L., Grube M. (2012). Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front. Microbiol. 3 390. 10.3389/fmicb.2012.00390 PubMed DOI PMC

Hložková K., Matìnová M., Žáčková P., Strnad H., Hršelová H., Hroudová M., et al. (2016). Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol. 120 358–369. 10.1016/j.funbio.2015.11.007 PubMed DOI

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Kohler A., Kuo A., Nagy L. G., Morin E., Barry K. W., Buscot F., et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47 410–415. 10.1038/ng.3223 PubMed DOI

Kües U., Rühl M. (2011). Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr. Genomics 12 72–94. 10.2174/138920211795564377 PubMed DOI PMC

La Fontaine S., Mercer J. F. B. (2007). Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch. Biochem. Biophys. 463 149–167. 10.1016/j.abb.2007.04.021 PubMed DOI

Li Y., Iqbal M., Zhang Q., Spelt C., Bliek M., Hakvoort H. W. J., et al. (2017). Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana. New Phytol. 215 1102–1114. 10.1111/nph.14647 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔC(T) method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Migocka M., Posyniak E., Maciaszczyk-Dziubinska E., Papierniak A., Kosieradzaka A. (2015). Functional and biochemical characterization of cucumber genes encoding two copper ATPases CsHMA5.1 and CsHMA5.2. J. Biol. Chem. 290 15717–15729. 10.1074/jbc.M114.618355 PubMed DOI PMC

Mijnendonckx K., Leys N., Mahillon J., Silver S., Van Houdt R. (2013). Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26 609–621. 10.1007/s10534-013-9645-z PubMed DOI

Mumberg D., Müller R., Funk M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156 119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI

Nevitt T., Öhrvik H., Thiele D. J. (2012). Charting the travels of copper in eukaryotes from yeast to mammals. Biochim. Biophys. Acta Mol. Cell Res. 1823 1580–1593. 10.1016/j.bbamcr.2012.02.011 PubMed DOI PMC

Osobová M., Urban V., Jedelský P. L., Borovička J., Gryndler M., Ruml T., et al. (2011). Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol. 190 916–926. 10.1111/j.1469-8137.2010.03634.x PubMed DOI

Palmgren M. G., Nissen P. (2011). P-Type ATPases. Annu. Rev. Biophys. 40 243–266. 10.1146/annurev.biophys.093008.131331 PubMed DOI

Parisot D., Dufresne M., Veneault C., Laugé R., Langin T. (2002). clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol. Genet. Genomics 268 139–151. 10.1007/s00438-002-0744-8 PubMed DOI

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25 1605–1612. 10.1002/jcc.20084 PubMed DOI

Ramesh G., Podila G. K., Gay G., Marmeisse R., Reddy M. S. (2009). Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl. Environ. Microbiol. 75 2266–2274. 10.1128/AEM.02142-08 PubMed DOI PMC

Reddy M. S., Kour M., Aggarwal S., Ahuja S., Marmeisse R., Fraissinet-Tachet L. (2016). Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ. Microbiol. 18 2446–2454. 10.1111/1462-2920.13149 PubMed DOI

Reddy M. S., Prasanna L., Marmeisse R., Fraissinet-Tachet L. (2014). Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160 2235–2242. 10.1099/mic.0.080218-0 PubMed DOI

Riggle P. J., Kumamoto C. A. (2000). Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol. 182 4899–4905. 10.1128/JB.182.17.4899-4905.2000 PubMed DOI PMC

Rodrigues-Pousada C., Menezes R. A., Pimentel C. (2010). The Yap family and its role in stress response. Yeast 27 245–258. 10.1002/yea.1752 PubMed DOI

Sácký J., Leonhardt T., Borovička J., Gryndler M., Briksí A., Kotrba P. (2014). Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet. Biol. 64 3–14. 10.1016/j.fgb.2014.03.003 PubMed DOI

Saitoh Y., Izumitsu K., Morita A., Tanaka C. (2010). A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Mol. Genet. Genomics 284 33–43. 10.1007/s00438-010-0545-4 PubMed DOI

Shah F., Nicolás C., Bentzer J., Ellström M., Smits M., Rineau F., et al. (2016). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209 1705–1719. 10.1111/nph.13722 PubMed DOI PMC

Smith A. T., Smith K. P., Rosenzweig A. C. (2014). Diversity of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. 19 947–960. 10.1007/s00775-014-1129-2 PubMed DOI PMC

Szczypka M. S., Zhu Z., Silar P., Thiele D. J. (1997). Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13 1423–1435. 10.1002/(SICI)1097-0061(199712)13:15<1423::AID-YEA190>3.0.CO;2-C PubMed DOI

Tamai K. T., Gralla E. B., Ellerby L. M., Valentine J. S., Thiele D. J. (1993). Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc. Natl. Acad. Sci. U. S. A. 90 8013–8017. 10.1073/pnas.90.17.8013 PubMed DOI PMC

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC

Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680. 10.1093/nar/22.22.4673 PubMed DOI PMC

Walton F. J., Idnurm A., Heitman J. (2005). Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol. Microbiol. 57 1381–1396. 10.1111/j.1365-2958.2005.04779.x PubMed DOI

Webb B., Sali A. (2014). Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47 5.6.1–5.6.32. 10.1002/0471250953.bi0506s47 PubMed DOI

Weissman Z., Berdicevsky I., Cavari B. Z., Kornitzer D. (2000). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc. Natl. Acad. Sci. U.S.A. 97 3520–3525. 10.1073/pnas.97.7.3520 PubMed DOI PMC

Yuan D. S., Dancis A., Klausner R. D. (1997). Restriction to copper transport in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartments in the secretory pathway. J. Biol. Chem. 272 25787–25793. 10.1074/jbc.272.41.25787 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...