Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application

. 2024 Feb 23 ; 11 (3) : . [epub] 20240223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38535099

Grantová podpora
2021T016 Hartstichting

Identifying electrical dyssynchrony is crucial for cardiac pacing and cardiac resynchronization therapy (CRT). The ultra-high-frequency electrocardiography (UHF-ECG) technique allows instantaneous dyssynchrony analyses with real-time visualization. This review explores the physiological background of higher frequencies in ventricular conduction and the translational evolution of UHF-ECG in cardiac pacing and CRT. Although high-frequency components were studied half a century ago, their exploration in the dyssynchrony context is rare. UHF-ECG records ECG signals from eight precordial leads over multiple beats in time. After initial conceptual studies, the implementation of an instant visualization of ventricular activation led to clinical implementation with minimal patient burden. UHF-ECG aids patient selection in biventricular CRT and evaluates ventricular activation during various forms of conduction system pacing (CSP). UHF-ECG ventricular electrical dyssynchrony has been associated with clinical outcomes in a large retrospective CRT cohort and has been used to study the electrophysiological differences between CSP methods, including His bundle pacing, left bundle branch (area) pacing, left ventricular septal pacing and conventional biventricular pacing. UHF-ECG can potentially be used to determine a tailored resynchronization approach (CRT through biventricular pacing or CSP) based on the electrical substrate (true LBBB vs. non-specified intraventricular conduction delay with more distal left ventricular conduction disease), for the optimization of CRT and holds promise beyond CRT for the risk stratification of ventricular arrhythmias.

Zobrazit více v PubMed

Glikson M., Nielsen J.C., Kronborg M.B., Michowitz Y., Auricchio A., Barbash I.M., Barrabés J.A., Boriani G., Braunschweig F., Brignole M., et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Europace. 2022;24:71–164. doi: 10.1093/europace/euab232. PubMed DOI

Moss A.J., Hall W.J., Cannom D.S., Klein H., Brown M.W., Daubert J.P., Estes N.A.M., III, Foster E., Greenberg H., Higgins S.L., et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009;361:1329–1338. doi: 10.1056/NEJMoa0906431. PubMed DOI

Tang A.S.L., Wells G.A., Talajic M., Arnold M.O., Sheldon R., Connolly S., Hohnloser S.H., Nichol G., Birnie D.H., Sapp J.L., et al. Cardiac-Resynchronization Therapy for Mild-to-Moderate Heart Failure. N. Engl. J. Med. 2010;363:2385–2395. doi: 10.1056/NEJMoa1009540. PubMed DOI

Wilkoff B.L., Filippatos G., Leclercq C., Gold M.R., Hersi A.S., Kusano K., Mullens W., Felker G.M., Kantipudi C., El-Chami M.F., et al. Adaptive versus conventional cardiac resynchronisation therapy in patients with heart failure (AdaptResponse): A global, prospective, randomised controlled trial. Lancet. 2023;402:1147–1157. doi: 10.1016/S0140-6736(23)00912-1. PubMed DOI

Derval N., Duchateau J., Mahida S., Eschalier R., Sacher F., Lumens J., Cochet H., Denis A., Pillois X., Yamashita S., et al. Distinctive Left Ventricular Activations Associated with ECG Pattern in Heart Failure Patients. Circ. Arrhythm. Electrophysiol. 2017;10:e005073. doi: 10.1161/CIRCEP.117.005073. PubMed DOI

Auricchio A., Fantoni C., Regoli F., Carbucicchio C., Goette A., Geller C., Kloss M., Klein H. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109:1133–1139. doi: 10.1161/01.CIR.0000118502.91105.F6. PubMed DOI

Rijks J., Ghossein M.A., Wouters P.C., Dural M., Maass A.H., Meine M., Kloosterman M., Luermans J., Prinzen F.W., Vernooy K., et al. Comparison of the relation of the ESC 2021 and ESC 2013 definitions of left bundle branch block with clinical and echocardiographic outcome in cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 2023;34:1006–1014. doi: 10.1111/jce.15882. PubMed DOI

Nguyên U.C., Vernooy K., Prinzen F.W. Quest for the ideal assessment of electrical ventricular dyssynchrony in cardiac resynchronization therapy. J. Mol. Cell. Cardiol. Plus. 2024;7:100061. doi: 10.1016/j.jmccpl.2024.100061. DOI

Engels E.B., Alshehri S., van Deursen C.J., Wecke L., Bergfeldt L., Vernooy K., Prinzen F.W. The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J. Electrocardiol. 2015;48:586–592. doi: 10.1016/j.jelectrocard.2015.04.001. PubMed DOI

Emerek K., Friedman D.J., Sørensen P.L., Hansen S.M., Larsen J.M., Risum N., Thøgersen A.M., Graff C., Kisslo J., Søgaard P., et al. Vectorcardiographic QRS area is associated with long-term outcome after cardiac resynchronization therapy. Heart Rhythm. 2019;16:213–219. doi: 10.1016/j.hrthm.2018.08.028. PubMed DOI PMC

Tereshchenko L.G., Cheng A., Park J., Wold N., Meyer T.E., Gold M.R., Mittal S., Singh J., Stein K.M., Ellenbogen K.A. Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: Results from the SMART-AV Trial. Heart Rhythm. 2015;12:2402–2410. doi: 10.1016/j.hrthm.2015.08.009. PubMed DOI PMC

Rickard J., Jackson K., Biffi M., Vernooy K., Bank A., Cerkvenik J., Ghosh S., Gold M.R. The ECG Belt for CRT response trial: Design and clinical protocol. Pacing Clin. Electrophysiol. 2020;43:1063–1071. doi: 10.1111/pace.13985. PubMed DOI

Johnson W.B., Vatterott P.J., Peterson M.A., Bagwe S., Underwood R.D., Bank A.J., Gage R.M., Ramza B., Foreman B.W., Splett V., et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: Relationship with acute hemodynamic improvement. Heart Rhythm. 2017;14:385–391. doi: 10.1016/j.hrthm.2016.11.017. PubMed DOI

Gage R.M., Curtin A.E., Burns K.V., Ghosh S., Gillberg J.M., Bank A.J. Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in patients with cardiac resynchronization therapy. Heart Rhythm. 2017;14:392–399. doi: 10.1016/j.hrthm.2016.11.019. PubMed DOI

Rickard J., Jackson K., Gold M., Biffi M., Ziacchi M., Silverstein J., Ramza B., Metzl M., Grubman E., Abben R., et al. Electrocardiogram Belt guidance for left ventricular lead placement and biventricular pacing optimization. Heart Rhythm. 2023;20:537–544. doi: 10.1016/j.hrthm.2022.11.015. PubMed DOI

Varma N., Ploux S., Ritter P., Wilkoff B., Eschalier R., Bordachar P. Noninvasive mapping of electrical dyssynchrony in heart failure and cardiac resynchronization therapy. Card. Electrophysiol. Clin. 2015;7:125–134. doi: 10.1016/j.ccep.2014.11.012. PubMed DOI

Ploux S., Lumens J., Whinnett Z., Montaudon M., Strom M., Ramanathan C., Derval N., Zemmoura A., Denis A., De Guillebon M., et al. Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2013;61:2435–2443. doi: 10.1016/j.jacc.2013.01.093. PubMed DOI

Jia P., Ramanathan C., Ghanem R.N., Ryu K., Varma N., Rudy Y. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm. 2006;3:296–310. doi: 10.1016/j.hrthm.2005.11.025. PubMed DOI PMC

Jackson T., Claridge S., Behar J., Yao C., Elliott M., Mehta V., Gould J., Sidhu B., Pereira H., Niederer S., et al. Noninvasive electrocardiographic assessment of ventricular activation and remodeling response to cardiac resynchronization therapy. Heart Rhythm O2. 2021;2:12–18. doi: 10.1016/j.hroo.2021.01.004. PubMed DOI PMC

Pereira H., Jackson T.A., Claridge S., Yao C., Sieniewicz B., Gould J., Sidhu B., Niederer S., Rinaldi C.A. Evidence of reverse electrical remodelling by non-invasive electrocardiographic imaging to assess acute and chronic changes in bulk ventricular activation following cardiac resynchronisation therapy. J. Electrocardiol. 2020;58:96–102. doi: 10.1016/j.jelectrocard.2019.11.051. PubMed DOI

Strik M., Ploux S., Jankelson L., Bordachar P. Non-invasive cardiac mapping for non-response in cardiac resynchronization therapy. Ann. Med. 2019;51:109–117. doi: 10.1080/07853890.2019.1616109. PubMed DOI PMC

Rad M.M., Blaauw Y., Dinh T., Pison L., Crijns H.J., Prinzen F.W., Vernooy K. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace. 2015;17:84–93. PubMed

Del Greco M., Zorzi A., Di Matteo I., Cima A., Maines M., Angheben C., Catanzariti D. Coronary sinus activation patterns in patients with and without left bundle branch block undergoing electroanatomic mapping system-guided cardiac resynchronization therapy device implantation. Heart Rhythm. 2017;14:225–233. doi: 10.1016/j.hrthm.2016.10.025. PubMed DOI

Gold M.R., Birgersdotter-Green U., Singh J.P., Ellenbogen K.A., Yu Y., Meyer T.E., Seth M., Tchou P.J. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur. Heart J. 2011;32:2516–2524. doi: 10.1093/eurheartj/ehr329. PubMed DOI PMC

Singh J.P., Berger R.D., Doshi R.N., Lloyd M., Moore D., Stone J., Daoud E.G., ENHANCE CRT Study Group Targeted Left Ventricular Lead Implantation Strategy for Non-Left Bundle Branch Block Patients: The ENHANCE CRT Study. JACC Clin. Electrophysiol. 2020;6:1171–1181. doi: 10.1016/j.jacep.2020.04.034. PubMed DOI

Stephansen C., Sommer A., Kronborg M.B., Jensen J.M., Bouchelouche K., Nielsen J.C. Electrically guided versus imaging-guided implant of the left ventricular lead in cardiac resynchronization therapy: A study protocol for a double-blinded randomized controlled clinical trial (ElectroCRT) Trials. 2018;19:600. doi: 10.1186/s13063-018-2930-y. PubMed DOI PMC

Plesinger F., Viscor I., Vondra V., Halamek J., Koscova Z., Leinveber P., Curila K., Jural P. VDI Vision—Analysis of Ventricular Electrical Dyssynchrony in Real-Time; Proceedings of the 2021 Computing in Cardiology (CinC); Brno, Czech Republic. 13–15 September 2021; pp. 1–4.

Nguyên U.C., Verzaal N.J., van Nieuwenhoven F.A., Vernooy K., Prinzen F.W. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace. 2018;20:1898–1909. doi: 10.1093/europace/euy035. PubMed DOI

Boron W., Boulpaep E. Medical Physiology, Cardiac Electrophysiology and the Electrocardiogram. Elsevier; Amsterdam, The Netherlands: 2005.

Ramanathan C., Jia P., Ghanem R., Ryu K., Rudy Y. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl. Acad. Sci. USA. 2006;103:6309–6314. doi: 10.1073/pnas.0601533103. PubMed DOI PMC

Einthoven W. The different forms of the human electrocardiogram and their signification. Lancet. 1912;179:853–861. doi: 10.1016/S0140-6736(00)50560-1. DOI

Scher A.M., Young A.C. Frequency analysis of the electrocardiogram. Circ. Res. 1960;8:344–346. doi: 10.1161/01.RES.8.2.344. PubMed DOI

Burch G.E., Horan L.G., Ziskind J., Cronvich J.A. A correlative study of postmortem, electrocardiographic, and spatial vectorcardiographic data in myocardial infarction. Circulation. 1958;18:325–340. doi: 10.1161/01.CIR.18.3.325. PubMed DOI

Abboud S., Zlochiver S. High-frequency QRS electrocardiogram for diagnosing and monitoring ischemic heart disease. J. Electrocardiol. 2006;39:82–86. doi: 10.1016/j.jelectrocard.2005.09.007. PubMed DOI

Omer N., Bergman E., Ben-David T., Huri S., Beker A., Abboud S., Granot Y., Meerkin D. Changes in High-Frequency Intracardiac Electrogram Indicate Cardiac Ischemia. J. Cardiovasc. Transl. Res. 2022;15:84–94. doi: 10.1007/s12265-021-10146-4. PubMed DOI

Mor-Avi V., Shargorodsky B., Abboud S., Laniado S., Akselrod S. Effects of coronary occlusion on high-frequency content of the epicardial electrogram and body surface electrocardiogram. Circulation. 1987;76:237–243. doi: 10.1161/01.CIR.76.1.237. PubMed DOI

Pettersson J., Pahlm O., Carro E., Edenbrandt L., Ringborn M., Sörnmo L., Warren S.G., Wagner G.S. Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. J. Am. Coll. Cardiol. 2000;36:1827–1834. doi: 10.1016/S0735-1097(00)00936-0. PubMed DOI

Flowers N.C., Horan L.G., Thomas J.R., Tolleson W.J. The anatomic basis for high-frequency components in the electrocardiogram. Circulation. 1969;39:531–539. doi: 10.1161/01.CIR.39.4.531. PubMed DOI

Langner P.H., Geselowitz D.B., Jr., Mansure F.T., Lauer J.A. High-frequency components in the electrocardiograms of normal subjects and of patients with coronary heart disease. Am. Heart J. 1961;62:746–755. doi: 10.1016/0002-8703(61)90661-5. PubMed DOI

Goldberger A.L., Bhargava V., Froelicher V., Covell J. Effect of myocardial infarction on high-frequency QRS potentials. Circulation. 1981;64:34–42. doi: 10.1161/01.CIR.64.1.34. PubMed DOI

Josephson M.E., Horowitz L.N., Farshidi A., Spear J.F., Kastor J.A., Moore E.N. Recurrent sustained ventricular tachycardia. 2. Endocardial mapping. Circulation. 1978;57:440–447. doi: 10.1161/01.CIR.57.3.440. PubMed DOI

Gomes J.A., Cain M.E., Buxton A.E., Josephson M.E., Lee K.L., Hafley G.E. Prediction of long-term outcomes by signal-averaged electrocardiography in patients with unsustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation. 2001;104:436–441. doi: 10.1161/hc2901.093197. PubMed DOI

Gatzoulis K.A., Arsenos P., Trachanas K., Dilaveris P., Antoniou C., Tsiachris D., Sideris S., Kolettis T.M., Tousoulis D. Signal-averaged electrocardiography: Past, present, and future. J. Arrhythm. 2018;34:222–229. doi: 10.1002/joa3.12062. PubMed DOI PMC

Savard P., Rouleau J.L., Ferguson J., Poitras N., Morel P., Davies R.F., Stewart D.J., Talajic M., Gardner M., Dupuis R., et al. Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age, and myocardial infarction location. Circulation. 1997;96:202–213. doi: 10.1161/01.CIR.96.1.202. PubMed DOI

Fontaine J.M., Rao R., Henkin R., Suneja R., Ursell S.N., El-Sherif N. Study of the influence of left bundle branch block on the signal-averaged electrocardiogram: A qualitative and quantitative analysis. Pt 1Am. Heart J. 1991;121:494–508. doi: 10.1016/0002-8703(91)90717-V. PubMed DOI

Jurak P., Halamek J., Meluzin J., Plesinger F., Postranecka T., Lipoldova J., Novak M., Vondra V., Viscor I., Soukup L., et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Card. Electrophysiol. 2017;49:245–254. doi: 10.1007/s10840-017-0268-0. PubMed DOI PMC

Jurak P., Curila K., Leinveber P., Prinzen F.W., Viscor I., Plesinger F., Smisek R., Prochazkova R., Osmancik P., Halamek J., et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2020;31:300–307. doi: 10.1111/jce.14299. PubMed DOI

Plesinger F., Jurco J., Halamek J., Jurak P. SignalPlant: An open signal processing software platform. Physiol. Meas. 2016;37:N38–N48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI

Plesinger F., Jurco J., Halamek J., Leinveber P., Reichlova T., Jurak P. Multichannel QRS Morphology Clustering—Data Preprocessing for Ultra-High-Frequency ECG Analysis; Proceedings of the 3rd International Congress on Cardiovascular Technologies—CARDIOTECHNIX2015; Lisbon, Portugal. 16–17 November 2015; Setúbal, Portugal: SciTePress; 2015.

Jurak P., Bear L.R., Nguyen U.C., Viscor I., Andrla P., Plesinger F., Halamek J., Vondra V., Abell E., Cluitmans M.J.M., et al. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: Principles and clinical importance. Sci. Rep. 2021;11:11469. doi: 10.1038/s41598-021-90963-4. PubMed DOI PMC

Plesinger F., Jurak P., Halamek J., Nejedly P., Leinveber P., Viscor I., Vondra V., McNitt S., Polonsky B., Moss A.J., et al. Ventricular Electrical Delay Measured from Body Surface ECGs Is Associated with Cardiac Resynchronization Therapy Response in Left Bundle Branch Block Patients from the MADIT-CRT Trial (Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy) Circ. Arrhythm. Electrophysiol. 2018;11:e005719. PubMed

Curila K., Jurak P., Halamek J., Prinzen F., Waldauf P., Karch J., Stros P., Plesinger F., Mizner J., Susankova M., et al. Ventricular activation pattern assessment during right ventricular pacing: Ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021;32:1385–1394. doi: 10.1111/jce.14985. PubMed DOI

Curila K., Jurak P., Jastrzebski M., Prinzen F., Waldauf P., Halamek J., Vernooy K., Smisek R., Karch J., Plesinger F., et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18:1281–1289. doi: 10.1016/j.hrthm.2021.04.025. PubMed DOI

Curila K., Jurak P., Prinzen F., Jastrzebski M., Waldauf P., Halamek J., Tothova M., Znojilova L., Smisek R., Kach J., et al. Bipolar anodal septal pacing with direct LBB capture preserves physiological ventricular activation better than unipolar left bundle branch pacing. Front. Cardiovasc. Med. 2023;10:1140988. doi: 10.3389/fcvm.2023.1140988. PubMed DOI PMC

Curila K., Jurak P., Vernooy K., Jastrzebski M., Waldauf P., Prinzen F., Halamek J., Susankova M., Znojilova L., Smisek R., et al. Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing. Front. Cardiovasc. Med. 2021;8:787414. doi: 10.3389/fcvm.2021.787414. PubMed DOI PMC

Curila K., Prochazkova R., Jurak P., Jastrzebski M., Halamek J., Moskal P., Stros P., Vesela J., Waldauf P., Viscor I., et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2020;17:607–614. doi: 10.1016/j.hrthm.2019.11.016. PubMed DOI

Mizner J., Jurak P., Linkova H., Smisek R., Curila K. Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-High-Frequency ECG and Other Dyssynchrony Assessment Tools. Arrhythm. Electrophysiol. Rev. 2022;11:e17. doi: 10.15420/aer.2022.01. PubMed DOI PMC

Sussenbek O., Rademakers L., Waldauf P., Jurak P., Smisek R., Stros P., Poviser L., Vesela J., Plesinger F., Halamek J., et al. Left bundle branch area pacing results in more physiological ventricular activation than biventricular pacing in patients with left bundle branch block heart failure. Eur. Heart J. Suppl. 2023;25((Suppl. SE)):E17–E24. doi: 10.1093/eurheartjsupp/suad109. PubMed DOI PMC

Burri H., Jastrzebski M., Cano Ó., Čurila K., de Pooter J., Huang W., Israel C., Joza J., Romero J., Vernooy K., et al. EHRA clinical consensus statement on conduction system pacing implantation: Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), Canadian Heart Rhythm Society (CHRS), and Latin American Heart Rhythm Society (LAHRS) Europace. 2023;25:1208–1236. doi: 10.1093/europace/euad043. PubMed DOI PMC

Heckman L., Vijayaraman P., Luermans J., Stipdonk A.M.W., Salden F., Maass A.H., Prinzen F.W., Vernooy K. Novel bradycardia pacing strategies. Heart. 2020;106:1883–1889. doi: 10.1136/heartjnl-2020-316849. PubMed DOI

Jastrzębski M., Kiełbasa G., Cano O., Curila K., Heckman L., De Pooter J., Chovanec M., Rademakers L., Huybrechts W., Grieco D., et al. Left bundle branch area pacing outcomes: The multicentre European MELOS study. Eur. Heart J. 2022;43:4161–4173. doi: 10.1093/eurheartj/ehac445. PubMed DOI PMC

Pujol-Lopez M., Jiménez-Arjona R., Garre P., Guasch E., Borràs R., Doltra A., Ferró E., García-Ribas C., Niebla M., Carro E., et al. Conduction System Pacing vs Biventricular Pacing in Heart Failure and Wide QRS Patients: LEVEL-AT Trial. JACC Clin. Electrophysiol. 2022;8:1431–1445. doi: 10.1016/j.jacep.2022.08.001. PubMed DOI

Ezzeddine F.M., Pistiolis S.M., Pujol-Lopez M., Lavelle M., Wan E.Y., Patton K.K., Robinson M., Lador A., Tamirisa K., Karim S., et al. Outcomes of conduction system pacing for cardiac resynchronization therapy in patients with heart failure: A multicenter experience. Heart Rhythm. 2023;20:863–871. doi: 10.1016/j.hrthm.2023.02.018. PubMed DOI PMC

Wang Y., Zhu H., Hou X., Wang Z., Zou F., Qian Z., Wei Y., Wang X., Zhang L., Li X., et al. Randomized Trial of Left Bundle Branch vs Biventricular Pacing for Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2022;80:1205–1216. doi: 10.1016/j.jacc.2022.07.019. PubMed DOI

Rijks J., Luermans J., Heckman L., van Stipdonk A.M.W., Prinzen F., Lumens J., Vernooy K. Physiology of Left Ventricular Septal Pacing and Left Bundle Branch Pacing. Card. Electrophysiol. Clin. 2022;14:181–189. doi: 10.1016/j.ccep.2021.12.010. PubMed DOI

El-Sherif N., Amay-Y-Leon F., Schonfield C., Scherlag B.J., Rosen K., Lazzara R., Wyndham C. Normalization of bundle branch block patterns by distal His bundle pacing. Clinical and experimental evidence of longitudinal dissociation in the pathologic his bundle. Circulation. 1978;57:473–483. doi: 10.1161/01.CIR.57.3.473. PubMed DOI

Vinther M., Risum N., Svendsen J.H., Møgelvang R., Philbert B.T. A Randomized Trial of His Pacing Versus Biventricular Pacing in Symptomatic HF Patients With Left Bundle Branch Block (His-Alternative) JACC Clin. Electrophysiol. 2021;7:1422–1432. doi: 10.1016/j.jacep.2021.04.003. PubMed DOI

Upadhyay G.A., Razminia P., Tung R. His-bundle pacing is the best approach to physiological pacing. Heart Rhythm O2. 2020;1:68–75. doi: 10.1016/j.hroo.2020.03.001. PubMed DOI PMC

Huang W., Su L., Wu S., Xu L., Xiao F., Zhou X., Ellenbogen K.A. A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Can. J. Cardiol. 2017;33:1736.e1–1736.e3. doi: 10.1016/j.cjca.2017.09.013. PubMed DOI

Huang W., Chen X., Su L., Wu S., Xia X., Vijayaraman P. A beginner’s guide to permanent left bundle branch pacing. Heart Rhythm. 2019;16:1791–1796. doi: 10.1016/j.hrthm.2019.06.016. PubMed DOI

Vijayaraman P., Sharma P.S., Cano Ó., Ponnusamy S.S., Herweg B., Zanon F., Jastrzebski M., Zou J., Chelu M.G., Vernooy K., et al. Comparison of Left Bundle Branch Area Pacing and Biventricular Pacing in Candidates for Resynchronization Therapy. J. Am. Coll. Cardiol. 2023;82:228–241. doi: 10.1016/j.jacc.2023.05.006. PubMed DOI

Halamek J., Leinveber P., Viscor I., Smisek R., Plesinger F., Vondra V., Lipoldova J., Matejkova M., Jurak P. The relationship between ECG predictors of cardiac resynchronization therapy benefit. PLoS ONE. 2019;14:e0217097. doi: 10.1371/journal.pone.0217097. PubMed DOI PMC

Rijks J., Luermans J., Vernooy K. Left bundle branch-optimized cardiac resynchronization therapy: Pursuing the optimal resynchronization in severe (distal) conduction system disease. Heart Rhythm Case Rep. 2023;9:355–357. doi: 10.1016/j.hrcr.2023.02.015. PubMed DOI PMC

Tung R., Upadhyay G.A. Defining Left Bundle Branch Block Patterns in Cardiac Resynchronisation Therapy: A Return to His Bundle Recordings. Arrhythm. Electrophysiol. Rev. 2020;9:28–33. doi: 10.15420/aer.2019.12. PubMed DOI PMC

Jastrzebski M., Moskal P., Huybrechts W., Curila K., Sreekumar P., Rademakers L.M., Ponnusamy S.S., Herweg B., Sharma P.S., Bednarek A., et al. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): Results from an international LBBAP collaborative study group. Heart Rhythm. 2022;19:13–21. doi: 10.1016/j.hrthm.2021.07.057. PubMed DOI

Vijayaraman P., Herweg B., Ellenbogen K.A., Gajek J. His-Optimized Cardiac Resynchronization Therapy to Maximize Electrical Resynchronization: A Feasibility Study. Circ. Arrhythm. Electrophysiol. 2019;12:e006934. doi: 10.1161/CIRCEP.118.006934. PubMed DOI

Curila K., Jurak P., Varma N. Resynchronization for shifting conduction patterns—When a coronary sinus lead is not enough. Indian Pacing Electrophysiol. J. 2023;23:214–215. doi: 10.1016/j.ipej.2023.08.005. PubMed DOI PMC

Curila K., Jurak P., Chelu M.G., Upadhyay G., Sedlacek K., Osmancik P. Is it a true left bundle branch block or not? J. Interv. Card. Electrophysiol. 2023;66:1329–1331. doi: 10.1007/s10840-023-01530-y. PubMed DOI PMC

Koscova Z., Ivora A., Nejedly P., Halamek J., Jurak P., Matejkova M., Leinveber P., Znojilova L., Curila K., Filip P. QRS Complex. Detection in Paced and Spontaneous Ultra-High-Frequency ECG; Proceedings of the 2021 Computing in Cardiology (CinC) 2021; Brno, Czech Republic. 13–15 September 2021.

Saleh K., Varnava A., Shun-Shin M.J., Ali N., Mohal J., Chiew K., Hanif M., Merzah A.J., Howard J.P., Jurak P., et al. Ultra-high-frequency ECG assessment of QRS fragmentation predicts sudden cardiac death risk in inherited arrhythmia syndromes. Eur. Heart J. 2022;43((Suppl. S2)):ehac544-678. doi: 10.1093/eurheartj/ehac544.678. DOI

Herweg B., Sharma P.S., Cano O., Ponnusamy S.S., Zanon F., Jastrzebski M., Zou J., Chelu M.G., Vernooy K., Whinnett Z.I., et al. Arrhythmic Risk in Biventricular Pacing Compared with Left Bundle Branch Area Pacing: Results from The International LBBAP Collaborative Study (I-CLAS) Circulation. 2023;149:379–390. doi: 10.1161/CIRCULATIONAHA.123.067465. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...