Ventricular activation pattern assessment during right ventricular pacing: Ultra-high-frequency ECG study

. 2021 May ; 32 (5) : 1385-1394. [epub] 20210311

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33682277

BACKGROUND: Right ventricular (RV) pacing causes delayed activation of remote ventricular segments. We used the ultra-high-frequency ECG (UHF-ECG) to describe ventricular depolarization when pacing different RV locations. METHODS: In 51 patients, temporary pacing was performed at the RV septum (mSp); further subclassified as right ventricular inflow tract (RVIT) and right ventricular outflow tract (RVOT) for septal inflow and outflow positions (below or above the plane of His bundle in right anterior oblique), apex, anterior lateral wall, and at the basal RV septum with nonselective His bundle or RBB capture (nsHBorRBBp). The timings of UHF-ECG electrical activations were quantified as left ventricular lateral wall delay (LVLWd; V8 activation delay) and RV lateral wall delay (RVLWd; V1 activation delay). RESULTS: The LVLWd was shortest for nsHBorRBBp (11 ms [95% confidence interval = 5-17]), followed by the RVIT (19 ms [11-26]) and the RVOT (33 ms [27-40]; p < .01 between all of them), although the QRSd for the latter two were the same (153 ms (148-158) vs. 153 ms (148-158); p = .99). RV apical capture not only had a longer LVLWd (34 ms (26-43) compared to mSp (27 ms (20-34), p < .05), but its RVLWd (17 ms (9-25) was also the longest compared to other RV pacing sites (mean values for nsHBorRBBp, mSp, anterior and lateral wall captures being below 6 ms), p < .001 compared to each of them. CONCLUSION: RVIT pacing produces better ventricular synchrony compared to other RV pacing locations with myocardial capture. However, UHF-ECG ventricular dysynchrony seen during RVIT pacing is increased compared to concomitant capture of basal septal myocytes and His bundle or proximal right bundle branch.

Zobrazit více v PubMed

Sweeney MO, Prinzen FW. A new paradigm for physiologic ventricular pacing. J Am Coll Cardiol. 2006;47(2):282-288.

Kaye GC, Linker NJ, Marwick TH, et al. Protect-Pace trial i: effect of right ventricular pacing lead site on left ventricular function in patients with high-grade atrioventricular block: results of the Protect-Pace study. Eur Heart J. 2015;36(14):856-862.

Domenichini G, Sunthorn H, Fleury E, Foulkes H, Stettler C, Burri H. Pacing of the interventricular septum versus the right ventricular apex: a prospective, randomized study. Eur J Intern Med. 2012;23(7):621-627.

Abdelrahman M, Subzposh FA, Beer D, et al. Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol. 2018;71(20):2319-2330.

Keene D, Arnold AD, Jastrzębski M, et al. His bundle pacing, learning curve, procedure characteristics, safety, and feasibility: insights from a large international observational study. J Cardiovasc Electrophysiol. 2019;30(10):1984-1993.

Su L, Wu S, Wang S, et al. Pacing parameters and success rates of permanent His-bundle pacing in patients with narrow QRS: a single-centre experience. Europace. 2019;21(5):763-770.

Bednarek A, Ionita O, Moskal P, et al. Nonselective versus selective His bundle pacing: an acute intrapatient speckle-tracking strain echocardiographic study. J Cardiovasc Electrophysiol. 2021;32(1):117-125.

Jurak P, Curila K, Leinveber P, et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J Cardiovasc Electrophysiol. 2020;31(1):300-307.

Jurak P, Bear L, Nguyen U. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance. Res Sq. 2020. https://doi.org/10.21203/rs.3rs-133316/v1

Curila K, Prochazkova R, Jurak P, et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2020;17(4):607-614.

Plesinger F, Jurak P, Halamek J, et al. Ventricular electrical delay measured from body surface ECGs is associated with cardiac resynchronization therapy response in left bundle branch block patients from the MADIT-CRT trial (Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy). Circ Arrhythm Electrophysiol. 2018;11(5):e005719.

Devabhaktuni S, Mar PL, Shirazi J, Dandamudi G. How to perform His bundle pacing: tools and techniques. Cardiac Electrophysiol Clin. 2018;10(3):495-502.

Schwaab B, Kindermann M, Frohlig G, Berg M, Kusch O, Schieffer H. Septal lead implantation for the reduction of paced QRS duration using passive-fixation leads. Pacing Clin Electrophysiol. 2001;24(1):28-33.

Burri H, Park CI, Zimmermann M, et al. Utility of the surface electrocardiogram for confirming right ventricular septal pacing: validation using electroanatomical mapping. Europace. 2011;13(1):82-86.

Osmancik P, Stros P, Herman D, Curila K, Petr R. The insufficiency of left anterior oblique and the usefulness of right anterior oblique projection for correct localization of a computed tomography-verified right ventricular lead into the midseptum. Circ Arrhythm Electrophysiol. 2013;6(4):719-725.

Sanz J, Sanchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(12):1463-1482.

Sweeney MO, Prinzen FW. Ventricular pump function and pacing: physiological and clinical integration. Circ Arrhythm Electrophysiol. 2008;1(2):127-139.

Vassallo JA, Cassidy DM, Miller JM, Buxton AE, Marchlinski FE, Josephson ME. Left ventricular endocardial activation during right ventricular pacing: effect of underlying heart disease. J Am Coll Cardiol. 19867(6):1228-1233.

Hattori M, Naruse Y, Oginosawa Y, et al. Prognostic impact of lead tip position confirmed via computed tomography in patients with right ventricular septal pacing. Heart Rhythm. 2019;16(6):921-927.

Varma N, Jia P, Ramanathan C, Rudy Y. RV electrical activation in heart failure during right, left, and biventricular pacing. JACC Cardiovasc Imaging. 2010;3(6):567-575.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ultra-high-frequency ECG volumetric and negative derivative epicardial ventricular electrical activation pattern

. 2024 Mar 07 ; 14 (1) : 5681. [epub] 20240307

Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application

. 2024 Feb 23 ; 11 (3) : . [epub] 20240223

Left bundle branch area pacing results in more physiological ventricular activation than biventricular pacing in patients with left bundle branch block heart failure

. 2023 Jun ; 25 (Suppl E) : E17-E24. [epub] 20230524

Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-high-frequency ECG and Other Dyssynchrony Assessment Tools

. 2022 Apr ; 11 () : e17.

Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing

. 2021 ; 8 () : 787414. [epub] 20211207

3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance

. 2021 Jun 01 ; 11 (1) : 11469. [epub] 20210601

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...