Ultra-high-frequency ECG volumetric and negative derivative epicardial ventricular electrical activation pattern
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund - Project ENOCH
NU21-02-00584
Ministry of Health of the Czech Republic
RVO:68081731
The Czech Academy of Sciences
PubMed
38454102
PubMed Central
PMC10920693
DOI
10.1038/s41598-024-55789-w
PII: 10.1038/s41598-024-55789-w
Knihovny.cz E-zdroje
- MeSH
- blokáda Tawarova raménka diagnóza MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- retrospektivní studie MeSH
- srdeční arytmie MeSH
- srdeční komory * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
From precordial ECG leads, the conventional determination of the negative derivative of the QRS complex (ND-ECG) assesses epicardial activation. Recently we showed that ultra-high-frequency electrocardiography (UHF-ECG) determines the activation of a larger volume of the ventricular wall. We aimed to combine these two methods to investigate the potential of volumetric and epicardial ventricular activation assessment and thereby determine the transmural activation sequence. We retrospectively analyzed 390 ECG records divided into three groups-healthy subjects with normal ECG, left bundle branch block (LBBB), and right bundle branch block (RBBB) patients. Then we created UHF-ECG and ND-ECG-derived depolarization maps and computed interventricular electrical dyssynchrony. Characteristic spatio-temporal differences were found between the volumetric UHF-ECG activation patterns and epicardial ND-ECG in the Normal, LBBB, and RBBB groups, despite the overall high correlations between both methods. Interventricular electrical dyssynchrony values assessed by the ND-ECG were consistently larger than values computed by the UHF-ECG method. Noninvasively obtained UHF-ECG and ND-ECG analyses describe different ventricular dyssynchrony and the general course of ventricular depolarization. Combining both methods based on standard 12-lead ECG electrode positions allows for a more detailed analysis of volumetric and epicardial ventricular electrical activation, including the assessment of the depolarization wave direction propagation in ventricles.
Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Scientific Instruments The Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Jurak P, et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2020;31(1):300–307. doi: 10.1111/jce.14299. PubMed DOI
Jurak P, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Card. Electrophysiol. 2017;49(3):245–254. doi: 10.1007/s10840-017-0268-0. PubMed DOI PMC
Jurak P, et al. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: Principles and clinical importance. Sci. Rep. 2021;11(1):11469. doi: 10.1038/s41598-021-90963-4. PubMed DOI PMC
Plesinger F, et al. Ventricular electrical delay measured from body surface ECGs is associated with cardiac resynchronization therapy response in left bundle branch block patients from the MADIT-CRT trial (multicenter automatic defibrillator implantation-cardiac resynchronization therapy) Circ. Arrhythm. Electrophysiol. 2018;11(5):e005719. doi: 10.1161/CIRCEP.117.005719. PubMed DOI
Halamek J, et al. The relationship between ECG predictors of cardiac resynchronization therapy benefit. PLoS One. 2019;14(5):e0217097. doi: 10.1371/journal.pone.0217097. PubMed DOI PMC
Curila K, et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2019;17(4):607–614. doi: 10.1016/j.hrthm.2019.11.016. PubMed DOI
Curila K, et al. Ventricular activation pattern assessment during right ventricular pacing; ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021;32(5):1385–1394. doi: 10.1111/jce.14985. PubMed DOI
Lewis T, Rothschild MA. The excitatory process in the dog's heart. Part II.- The ventricles. Phil. Trans. R. Soc. 1915;206:325–334. doi: 10.1098/rstb.1915.0004. DOI
Dower GE. In defence of the intrinsic deflection. Br. Heart J. 1962;24(1):55–60. doi: 10.1136/hrt.24.1.55. PubMed DOI PMC
Cantwell CD, et al. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput. Biol. Med. 2015;65:229–242. doi: 10.1016/j.compbiomed.2015.04.027. PubMed DOI PMC
Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ. Res. 2013;112(5):863–874. doi: 10.1161/CIRCRESAHA.112.279315. PubMed DOI PMC
Macleod AG, Wilson FN, Barker PS. The Form of the eelectrocardiogram. I. intrinsicoid electrocardiographic deflections in animals and man. Proc. Soc. Exper. Biol. Med. 1930;27(6):586–587. doi: 10.3181/00379727-27-4868. DOI
Del-Carpio Munoz F, et al. Delayed intrinsicoid deflection onset in surface ECG lateral leads predicts left ventricular reverse remodeling after cardiac resynchronization therapy. Heart Rhythm. 2013;10(7):979–987. doi: 10.1016/j.hrthm.2013.03.045. PubMed DOI
Vereckei A, et al. Novel electrocardiographic dyssynchrony criteria improve patient selection for cardiac resynchronization therapy. Europace. 2018;20(1):97–103. doi: 10.1093/europace/euw326. PubMed DOI
Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am. J. Cardiol. 2011;107(6):927–934. doi: 10.1016/j.amjcard.2010.11.010. PubMed DOI
Issa ZF, Miller JM, Zipes DP. Clinical Arrhythmology and Electrophysiology: A Companion to Braunwald's Heart Disease. Elsevier; 2009.
Talbot S. Diagnosis of ventricular conduction defects. Angiology. 1977;28(1):19–30. doi: 10.1177/000331977702800104. PubMed DOI
Perez-Riera AR, et al. R-peak time: An electrocardiographic parameter with multiple clinical applications. Ann. Noninvasive Electrocardiol. 2016;21(1):10–19. doi: 10.1111/anec.12323. PubMed DOI PMC
Melgaard J, et al. The cardiosynchrogram: A method to visualize and quantify ventricular dyssynchrony. J. Electrocardiol. 2019;57S:S45–S50. doi: 10.1016/j.jelectrocard.2019.09.020. PubMed DOI
Bank AJ, et al. Electrical wavefront fusion in heart failure patients with left bundle branch block and cardiac resynchronization therapy: Implications for optimization. J. Electrocardiol. 2020;61:47–56. doi: 10.1016/j.jelectrocard.2020.05.015. PubMed DOI
Vitek M, Hrubes J, Kozumplik J. A wavelet-based ECG delineation with improved P wave offset detection accuracy. Anal. Biomed. Signals Images. 2010;20:160–165.
Durrer D, et al. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI
Wyndham CR, et al. Epicardial activation of the intact human heart without conduction defect. Circulation. 1979;59(1):161–168. doi: 10.1161/01.CIR.59.1.161. PubMed DOI
Strik M, et al. Electrical and mechanical ventricular activation during left bundle branch block and resynchronization. J. Cardiovasc. Transl. Res. 2012;5(2):117–126. doi: 10.1007/s12265-012-9351-1. PubMed DOI PMC
Strik M, et al. Transseptal conduction as an important determinant for cardiac resynchronization therapy, as revealed by extensive electrical mapping in the dyssynchronous canine heart. Circ. Arrhythm. Electrophysiol. 2013;6(4):682–689. doi: 10.1161/CIRCEP.111.000028. PubMed DOI
Fantoni C, et al. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: A detailed analysis using three-dimensional non-fluoroscopic electroanatomic mapping system. J. Cardiovasc. Electrophysiol. 2005;16(2):112–119. doi: 10.1046/j.1540-8167.2005.40777.x. PubMed DOI
Sohi GS, Flowers NC. Body surface map patterns of altered depolarization and repolarization in right bundle branch block. Circulation. 1980;61(3):634–640. doi: 10.1161/01.CIR.61.3.634. PubMed DOI
Jastrzebski M, Fijorek K, Czarnecka D. Electrocardiographic patterns during left ventricular epicardial pacing. Pacing Clin. Electrophysiol. 2012;35(11):1361–1368. doi: 10.1111/j.1540-8159.2012.03504.x. PubMed DOI
van Deursen CJ, et al. The value of the 12-lead ECG for evaluation and optimization of cardiac resynchronization therapy in daily clinical practice. J. Electrocardiol. 2014;47(2):202–211. doi: 10.1016/j.jelectrocard.2014.01.007. PubMed DOI
Sodi-Pallares D, Barbato E, Delmar A. Relationship between the intrinsic deflection and subepicardial activation; an experimental study. Am. Heart J. 1950;39(3):387–396. doi: 10.1016/0002-8703(50)90337-1. PubMed DOI
Spach MS, et al. Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ. Res. 1972;30(5):505–519. doi: 10.1161/01.RES.30.5.505. PubMed DOI
Curila K, et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18(8):1281–1289. doi: 10.1016/j.hrthm.2021.04.025. PubMed DOI
Curila K, et al. Left Ventricular myocardial septal pacing in close proximity to LBB does not prolong the duration of the left ventricular lateral wall depolarization compared to LBB pacing. Front. Cardiovasc. Med. 2021;8:787414. doi: 10.3389/fcvm.2021.787414. PubMed DOI PMC