Ultra-high-frequency ECG volumetric and negative derivative epicardial ventricular electrical activation pattern

. 2024 Mar 07 ; 14 (1) : 5681. [epub] 20240307

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38454102

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund - Project ENOCH
NU21-02-00584 Ministry of Health of the Czech Republic
RVO:68081731 The Czech Academy of Sciences

Odkazy

PubMed 38454102
PubMed Central PMC10920693
DOI 10.1038/s41598-024-55789-w
PII: 10.1038/s41598-024-55789-w
Knihovny.cz E-zdroje

From precordial ECG leads, the conventional determination of the negative derivative of the QRS complex (ND-ECG) assesses epicardial activation. Recently we showed that ultra-high-frequency electrocardiography (UHF-ECG) determines the activation of a larger volume of the ventricular wall. We aimed to combine these two methods to investigate the potential of volumetric and epicardial ventricular activation assessment and thereby determine the transmural activation sequence. We retrospectively analyzed 390 ECG records divided into three groups-healthy subjects with normal ECG, left bundle branch block (LBBB), and right bundle branch block (RBBB) patients. Then we created UHF-ECG and ND-ECG-derived depolarization maps and computed interventricular electrical dyssynchrony. Characteristic spatio-temporal differences were found between the volumetric UHF-ECG activation patterns and epicardial ND-ECG in the Normal, LBBB, and RBBB groups, despite the overall high correlations between both methods. Interventricular electrical dyssynchrony values assessed by the ND-ECG were consistently larger than values computed by the UHF-ECG method. Noninvasively obtained UHF-ECG and ND-ECG analyses describe different ventricular dyssynchrony and the general course of ventricular depolarization. Combining both methods based on standard 12-lead ECG electrode positions allows for a more detailed analysis of volumetric and epicardial ventricular electrical activation, including the assessment of the depolarization wave direction propagation in ventricles.

Zobrazit více v PubMed

Jurak P, et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2020;31(1):300–307. doi: 10.1111/jce.14299. PubMed DOI

Jurak P, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Card. Electrophysiol. 2017;49(3):245–254. doi: 10.1007/s10840-017-0268-0. PubMed DOI PMC

Jurak P, et al. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: Principles and clinical importance. Sci. Rep. 2021;11(1):11469. doi: 10.1038/s41598-021-90963-4. PubMed DOI PMC

Plesinger F, et al. Ventricular electrical delay measured from body surface ECGs is associated with cardiac resynchronization therapy response in left bundle branch block patients from the MADIT-CRT trial (multicenter automatic defibrillator implantation-cardiac resynchronization therapy) Circ. Arrhythm. Electrophysiol. 2018;11(5):e005719. doi: 10.1161/CIRCEP.117.005719. PubMed DOI

Halamek J, et al. The relationship between ECG predictors of cardiac resynchronization therapy benefit. PLoS One. 2019;14(5):e0217097. doi: 10.1371/journal.pone.0217097. PubMed DOI PMC

Curila K, et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2019;17(4):607–614. doi: 10.1016/j.hrthm.2019.11.016. PubMed DOI

Curila K, et al. Ventricular activation pattern assessment during right ventricular pacing; ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021;32(5):1385–1394. doi: 10.1111/jce.14985. PubMed DOI

Lewis T, Rothschild MA. The excitatory process in the dog's heart. Part II.- The ventricles. Phil. Trans. R. Soc. 1915;206:325–334. doi: 10.1098/rstb.1915.0004. DOI

Dower GE. In defence of the intrinsic deflection. Br. Heart J. 1962;24(1):55–60. doi: 10.1136/hrt.24.1.55. PubMed DOI PMC

Cantwell CD, et al. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput. Biol. Med. 2015;65:229–242. doi: 10.1016/j.compbiomed.2015.04.027. PubMed DOI PMC

Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ. Res. 2013;112(5):863–874. doi: 10.1161/CIRCRESAHA.112.279315. PubMed DOI PMC

Macleod AG, Wilson FN, Barker PS. The Form of the eelectrocardiogram. I. intrinsicoid electrocardiographic deflections in animals and man. Proc. Soc. Exper. Biol. Med. 1930;27(6):586–587. doi: 10.3181/00379727-27-4868. DOI

Del-Carpio Munoz F, et al. Delayed intrinsicoid deflection onset in surface ECG lateral leads predicts left ventricular reverse remodeling after cardiac resynchronization therapy. Heart Rhythm. 2013;10(7):979–987. doi: 10.1016/j.hrthm.2013.03.045. PubMed DOI

Vereckei A, et al. Novel electrocardiographic dyssynchrony criteria improve patient selection for cardiac resynchronization therapy. Europace. 2018;20(1):97–103. doi: 10.1093/europace/euw326. PubMed DOI

Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am. J. Cardiol. 2011;107(6):927–934. doi: 10.1016/j.amjcard.2010.11.010. PubMed DOI

Issa ZF, Miller JM, Zipes DP. Clinical Arrhythmology and Electrophysiology: A Companion to Braunwald's Heart Disease. Elsevier; 2009.

Talbot S. Diagnosis of ventricular conduction defects. Angiology. 1977;28(1):19–30. doi: 10.1177/000331977702800104. PubMed DOI

Perez-Riera AR, et al. R-peak time: An electrocardiographic parameter with multiple clinical applications. Ann. Noninvasive Electrocardiol. 2016;21(1):10–19. doi: 10.1111/anec.12323. PubMed DOI PMC

Melgaard J, et al. The cardiosynchrogram: A method to visualize and quantify ventricular dyssynchrony. J. Electrocardiol. 2019;57S:S45–S50. doi: 10.1016/j.jelectrocard.2019.09.020. PubMed DOI

Bank AJ, et al. Electrical wavefront fusion in heart failure patients with left bundle branch block and cardiac resynchronization therapy: Implications for optimization. J. Electrocardiol. 2020;61:47–56. doi: 10.1016/j.jelectrocard.2020.05.015. PubMed DOI

Vitek M, Hrubes J, Kozumplik J. A wavelet-based ECG delineation with improved P wave offset detection accuracy. Anal. Biomed. Signals Images. 2010;20:160–165.

Durrer D, et al. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI

Wyndham CR, et al. Epicardial activation of the intact human heart without conduction defect. Circulation. 1979;59(1):161–168. doi: 10.1161/01.CIR.59.1.161. PubMed DOI

Strik M, et al. Electrical and mechanical ventricular activation during left bundle branch block and resynchronization. J. Cardiovasc. Transl. Res. 2012;5(2):117–126. doi: 10.1007/s12265-012-9351-1. PubMed DOI PMC

Strik M, et al. Transseptal conduction as an important determinant for cardiac resynchronization therapy, as revealed by extensive electrical mapping in the dyssynchronous canine heart. Circ. Arrhythm. Electrophysiol. 2013;6(4):682–689. doi: 10.1161/CIRCEP.111.000028. PubMed DOI

Fantoni C, et al. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: A detailed analysis using three-dimensional non-fluoroscopic electroanatomic mapping system. J. Cardiovasc. Electrophysiol. 2005;16(2):112–119. doi: 10.1046/j.1540-8167.2005.40777.x. PubMed DOI

Sohi GS, Flowers NC. Body surface map patterns of altered depolarization and repolarization in right bundle branch block. Circulation. 1980;61(3):634–640. doi: 10.1161/01.CIR.61.3.634. PubMed DOI

Jastrzebski M, Fijorek K, Czarnecka D. Electrocardiographic patterns during left ventricular epicardial pacing. Pacing Clin. Electrophysiol. 2012;35(11):1361–1368. doi: 10.1111/j.1540-8159.2012.03504.x. PubMed DOI

van Deursen CJ, et al. The value of the 12-lead ECG for evaluation and optimization of cardiac resynchronization therapy in daily clinical practice. J. Electrocardiol. 2014;47(2):202–211. doi: 10.1016/j.jelectrocard.2014.01.007. PubMed DOI

Sodi-Pallares D, Barbato E, Delmar A. Relationship between the intrinsic deflection and subepicardial activation; an experimental study. Am. Heart J. 1950;39(3):387–396. doi: 10.1016/0002-8703(50)90337-1. PubMed DOI

Spach MS, et al. Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ. Res. 1972;30(5):505–519. doi: 10.1161/01.RES.30.5.505. PubMed DOI

Curila K, et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18(8):1281–1289. doi: 10.1016/j.hrthm.2021.04.025. PubMed DOI

Curila K, et al. Left Ventricular myocardial septal pacing in close proximity to LBB does not prolong the duration of the left ventricular lateral wall depolarization compared to LBB pacing. Front. Cardiovasc. Med. 2021;8:787414. doi: 10.3389/fcvm.2021.787414. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...