3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34075135
PubMed Central
PMC8169848
DOI
10.1038/s41598-021-90963-4
PII: 10.1038/s41598-021-90963-4
Knihovny.cz E-zdroje
- MeSH
- diagnostické zobrazování * MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- prasata MeSH
- převodní systém srdeční * diagnostické zobrazování patofyziologie MeSH
- srdeční komory * diagnostické zobrazování patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The study introduces and validates a novel high-frequency (100-400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.
IHU Liryc Fondation Bordeaux Université Pessac Bordeaux France
INSERM CRCTB U1045 Bordeaux France
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Cluitmans M, et al. Validation and opportunities of electrocardiographic imaging: From technical achievements to clinical applications. Front. Physiol. 2018;9:1305. doi: 10.3389/fphys.2018.01305. PubMed DOI PMC
Oster HS, Taccardi B, Lux RL, Ershler PR, Rudy Y. Electrocardiographic imaging: Noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation. 1998;97(15):1496–1507. doi: 10.1161/01.CIR.97.15.1496. PubMed DOI
Cluitmans MJM, et al. In vivo validation of electrocardiographic imaging. JACC Clin. Electrophysiol. 2017;3(3):232–242. doi: 10.1016/j.jacep.2016.11.012. PubMed DOI
Bear LR, et al. How accurate is inverse electrocardiographic mapping? Circ. Arrhythm. Electrophysiol. 2018;11(5):e006108. doi: 10.1161/CIRCEP.117.006108. PubMed DOI
Sapp JL, Dawoud F, Clements JC, Horácek BM. Inverse solution mapping of epicardial potentials: Quantitative comparison with epicardial contact mapping. Circ. Arrhythm. Electrophysiol. 2012;5(5):1001–1009. doi: 10.1161/CIRCEP.111.970160. PubMed DOI
Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 2004;10(4):422–428. doi: 10.1038/nm1011. PubMed DOI PMC
Bear LR, et al. Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm. 2018;15(7):1058–1069. doi: 10.1016/j.hrthm.2018.02.024. PubMed DOI
Ploux S, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy. J. Am. Coll. Cardiol. 2013;61(24):2435–2443. doi: 10.1016/j.jacc.2013.01.093. PubMed DOI
Nguyên UC, et al. Evaluation of the use of unipolar voltage amplitudes for detection of myocardial scar assessed by cardiac magnetic resonance imaging in heart failure patients. PLoS ONE. 2017;12(7):e0180637. doi: 10.1371/journal.pone.0180637. PubMed DOI PMC
Nguyên UC, Mafi-Rad M, Aben J-P, Smulders MW, Engels EB, van Stipdonk AMW, et al. A novel approach for left ventricular lead placement in cardiac resynchronization therapy: Intraprocedural integration of coronary venous electroanatomic mapping with delayed enhancement cardiac magnetic resonance imaging. Heart Rhythm. 2017;14(1):110–119. doi: 10.1016/j.hrthm.2016.09.015. PubMed DOI
Jurak P, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Card. Electrophysiol. 2017;49(3):245–254. doi: 10.1007/s10840-017-0268-0. PubMed DOI PMC
Jurak P, et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2020;31(1):300–307. doi: 10.1111/jce.14299. PubMed DOI
Plesinger F, et al. Ventricular electrical delay measured from body surface ECGs is associated with cardiac resynchronization therapy response in left bundle branch block patients from the MADIT-CRT Trial (Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy) Circ. Arrhythm. Electrophysiol. 2018;11(5):e005719. doi: 10.1161/CIRCEP.117.005719. PubMed DOI
Curila K, et al. Both selective and nonselective his bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2020;17(4):607–614. doi: 10.1016/j.hrthm.2019.11.016. PubMed DOI
Curila K, et al. Ventricular activation pattern assessment during right ventricular pacing: Ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021 doi: 10.1111/jce.14985. PubMed DOI
Nguyên UC, et al. Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. Europace. 2018;21(4):626–635. doi: 10.1093/europace/euy292. PubMed DOI
Opthof T, et al. Cardiac activation–repolarization patterns and ion channel expression mapping in intact isolated normal human hearts. Heart Rhythm. 2017;14(2):265–272. doi: 10.1016/j.hrthm.2016.10.010. PubMed DOI
Caldwell BJ, et al. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2009;2(4):433–440. doi: 10.1161/CIRCEP.108.830133. PubMed DOI
Durrer D, et al. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI
Taccardi B, Punske BB, Macchi E, Macleod RS, Ershler PR. Epicardial and intramural excitation during ventricular pacing: Effect of myocardial structure. Am. J. Physiol. Heart. Circ. Physiol. 2008;294(4):H1753–H1766. doi: 10.1152/ajpheart.01400.2007. PubMed DOI PMC
Nanthakumar K, et al. Intraoperative high-density global mapping in adult-repaired tetralogy of fallot altered left ventricular and right ventricular activation and implications for resynchronization strategies. J. Am. Coll. Cardiol. 2010;55(21):2409–2411. doi: 10.1016/j.jacc.2010.02.027. PubMed DOI
Strik M, et al. Interplay of electrical wavefronts as determinant of the response to cardiac resynchronization therapy in dyssynchronous canine hearts. Circ. Arrhythm. Electrophysiol. 2013;6(5):924–931. doi: 10.1161/CIRCEP.113.000753. PubMed DOI
Derval N, et al. Distinctive left ventricular activations associated with ECG pattern in heart failure patients. Circ. Arrhythm. Electrophysiol. 2017;10(6):e005073. doi: 10.1161/CIRCEP.117.005073. PubMed DOI
van Dam PM, et al. Electrocardiographic imaging-based recognition of possible induced bundle branch blocks during transcatheter aortic valve implantations. Europace. 2017;16(5):750–757. PubMed
Duchateau J, et al. Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm. 2018;16(3):435–442. doi: 10.1016/j.hrthm.2018.10.010. PubMed DOI
Duchateau J, Potse M, Dubois R. Spatially coherent activation maps for electrocardiographic imaging. IEEE Trans. Biomed. Eng. 2017;64(5):1149–1156. doi: 10.1109/TBME.2016.2593003. PubMed DOI
Halamek J, et al. The relationship between ECG predictors of cardiac resynchronization therapy benefit. PLoS ONE. 2019;14(5):e0217097. doi: 10.1371/journal.pone.0217097. PubMed DOI PMC
Leinveber P, et al. The relationship between mechanical and electrical dyssynchrony. Comput. Cardiol. 2016 doi: 10.22489/CinC.2016.191-258. DOI
Plesinger F, et al. The VED meter—A new tool to measure the ventricular conduction abnormalities in heart failure patients. Comput. Cardiol. 2017 doi: 10.22489/cinc.2017.377-059. DOI