Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-high-frequency ECG and Other Dyssynchrony Assessment Tools

. 2022 Apr ; 11 () : e17.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35990106

The majority of patients tolerate right ventricular pacing well; however, some patients manifest signs of heart failure after pacemaker implantation and develop pacing-induced cardiomyopathy. This is a consequence of non-physiological ventricular activation bypassing the conduction system. Ventricular dyssynchrony was identified as one of the main factors responsible for pacing-induced cardiomyopathy development. Currently, methods that would allow rapid and reliable ventricular dyssynchrony assessment, ideally during the implant procedure, are lacking. Paced QRS duration is an imperfect marker of dyssynchrony, and methods based on body surface mapping, electrocardiographic imaging or echocardiography are laborious and time-consuming, and can be difficult to use during the implantation procedure. However, the ventricular activation sequence can be readily displayed from the chest leads using an ultra-high-frequency ECG. It can be performed during the implantation procedure to visualise ventricular depolarisation and resultant ventricular dyssynchrony during pacing. This information can assist the electrophysiologist in selecting a pacing location that avoids dyssynchronous ventricular activation.

Zobrazit více v PubMed

Furman S, Schwedel JB. An intracardiac pacemaker for Stokes-Adams seizures. N Engl J Med. 1959;261:943–8. doi: 10.1056/NEJM195911052611904. PubMed DOI

Bradshaw PJ, Stobie P, Knuiman MW et al. Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open Heart. 2014;1:e000177. doi: 10.1136/openhrt-2014-000177. PubMed DOI PMC

Wilkoff BL, Cook JR, Epstein AE et al. Dual-chamber pacing or ventricular with an implantable defibrillator. JAMA. 2002;288:3115–23. doi: 10.1001/jama.288.24.3115. PubMed DOI

Curtis AB, Worley SJ, Adamson PB et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368:1585–93. doi: 10.1056/NEJMoa1210356. PubMed DOI

Sweeney MO, Hellkamp AS, Ellenbogen KA et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932–7. doi: 10.1161/01.CIR.0000072769.17295.B1. PubMed DOI

Chan JYS, Fang F, Zhang Q et al. Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. Eur Heart J. 2011;32:2533–40. doi: 10.1093/eurheartj/ehr336. PubMed DOI

Kiehl EL, Makki T, Kumar R et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13:2272–8. doi: 10.1016/j.hrthm.2016.09.027. PubMed DOI

Khurshid S, Epstein AE, Verdino RJ et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy. Heart Rhythm. 2014;11:1619–25. doi: 10.1016/j.hrthm.2014.05.040. PubMed DOI

Sweeney MO, Hellkamp AS. Heart failure during cardiac pacing. Circulation. 2006;113:2082–8. doi: 10.1161/CIRCULATIONAHA.105.608356. PubMed DOI

Tayal B, Fruelund P, Sogaard P et al. Incidence of heart failure after pacemaker implantation: a nationwide Danish Registry-based follow-up study. Eur Heart J. 2019;40:3641–8. doi: 10.1093/eurheartj/ehz584. PubMed DOI

Kim JH, Kang KW, Chin JY et al. Major determinant of the occurrence of pacing-induced cardiomyopathy in complete atrioventricular block: a multicentre, retrospective analysis over a 15-year period in South Korea. BMJ Open. 2018;8:e019048. doi: 10.1136/bmjopen-2017-019048. PubMed DOI PMC

Zhang H, Zhou YJ, Zeng YJ. Prognostic factors of pacing-induced cardiomyopathy. Chin Med J (Engl) 2020;133:1533–9. doi: 10.1097/CM9.0000000000000856. PubMed DOI PMC

Lee SA, Cha MJ, Cho Y et al. Paced QRS duration and myocardial scar amount: predictors of long-term outcome of right ventricular apical pacing. Heart Vessels. 2016;31:1131–9. doi: 10.1007/s00380-015-0707-8. PubMed DOI

Kaye G, Ng JY, Ahmed S et al. The prevalence of pacing-induced cardiomyopathy (PICM) in patients with long term right ventricular pacing − is it a matter of definition? Heart Lung Circ. 2019;28:1027–33. doi: 10.1016/j.hlc.2018.05.196. PubMed DOI

Merchant FM, Mittal S. Pacing induced cardiomyopathy. J Cardiovasc Electrophysiol. 2020;31:286–92. doi: 10.1111/jce.14277. PubMed DOI

Draper MH, Mya-Tu M. A comparison of the conduction velocity in cardiac tissues of various mammals. Q J Exp Physiol Cogn Med Sci. 1959;44:91–109. doi: 10.1113/expphysiol.1959.sp001379. PubMed DOI

Tops LF, Schalij MJ, Bax JJ. The effects of right ventricular apical pacing on ventricular function and dyssynchrony: implications for therapy. J Am Coll Cardiol. 2009;54:764–76. doi: 10.1016/j.jacc.2009.06.006. PubMed DOI

Rouleau F, Merheb M, Geffroy S et al. Echocardiographic assessment of the interventricular delay of activation and correlation to the QRS width in dilated cardiomyopathy. Pacing Clin Electrophysiol. 2001;24:1500–6. doi: 10.1046/j.1460-9592.2001.01500.x. PubMed DOI

Ghio S, Constantin C, Klersy C et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J. 2004;25:571–8. doi: 10.1016/j.ehj.2003.09.030. PubMed DOI

Marsan NA, Breithardt OA, Delgado V et al. Predicting response to CRT. The value of two- and three-dimensional echocardiography. Europace. 2008;10:73–9. doi: 10.1093/europace/eun219. PubMed DOI

Tops LF, Schalij MJ, Holman ER et al. Right ventricular pacing can induce ventricular dyssynchrony in patients with atrial fibrillation after atrioventricular node ablation. J Am Coll Cardiol. 2006;48:1642–8. doi: 10.1016/j.jacc.2006.05.072. PubMed DOI

Delgado V, Tops LF, Trines SA et al. Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythm Electrophysiol. 2009;2:135–45. doi: 10.1161/CIRCEP.108.814608. PubMed DOI

Bansal R, Parakh N, Gupta A et al. Incidence and predictors of pacemaker-induced cardiomyopathy with comparison between apical and non-apical right ventricular pacing sites. J Interv Card Electrophysiol. 2019;56:63–70. doi: 10.1007/s10840-019-00602-2. PubMed DOI

Fang F, Luo XX, Zhang Q et al. Deterioration of left ventricular systolic function in extended Pacing to Avoid Cardiac Enlargement (PACE) trial: the predictive value of early systolic dyssynchrony. Europace. 2015;17:ii47–53. doi: 10.1093/europace/euv130. PubMed DOI

Schmidt M, Rittger H, Marschang H et al. Left ventricular dyssynchrony from right ventricular pacing depends on intraventricular conduction pattern in intrinsic rhythm. Eur J Echocardiogr. 2009;10:776–83. doi: 10.1093/ejechocard/jep069. PubMed DOI

Pastore G, Noventa F, Piovesana P et al. Left ventricular dyssynchrony resulting from right ventricular apical pacing: relevance of baseline assessment. Pacing Clin Electrophysiol. 2008;31:1456–62. doi: 10.1111/j.1540-8159.2008.01209.x. PubMed DOI

Van Oosterhout MFM, Prinzen FW, Arts T et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation. 1998;98:588–95. doi: 10.1161/01.CIR.98.6.588. PubMed DOI

Prinzen FW, Lumens J, Duchenn J, Vernooy K. Electro-energetics of biventricular, septal and conduction system pacing. Arrhythm Electrophysiol Rev. 2021;10:250–7. doi: 10.15420/aer.2021.30. PubMed DOI PMC

Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol. 1997;29:744–9. doi: 10.1016/S0735-1097(96)00586-4. PubMed DOI

Skalidis EI, Kochiadakis GE, Koukouraki SI et al. Myocardial perfusion in patients with permanent ventricular pacing and normal coronary arteries. J Am Coll Cardiol. 2001;37:124–9. doi: 10.1016/S0735-1097(00)01096-2. PubMed DOI

Lee MA, Dae MW, Langberg JJ et al. Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol. 1994;24:225–32. doi: 10.1016/0735-1097(94)90567-3. PubMed DOI

Marketou ME, Simantirakis EN, Prassopoulos VK et al. Assessment of myocardial adrenergic innervation in patients with sick sinus syndrome: effect of asynchronous ventricular activation from ventricular apical stimulation. Heart. 2002;88:255–9. doi: 10.1136/heart.88.3.255. PubMed DOI PMC

Lin JM, Lai LP, Lin CS et al. Left ventricular extracellular matrix remodeling in dogs with right ventricular apical pacing. J Cardiovasc Electrophysiol. 2010;21:1142–9. doi: 10.1111/j.1540-8167.2010.01765.x. PubMed DOI

Adomian GE, Beazell J. Myofibrillar disarray produced in normal hearts by chronic electrical pacing. Am Heart J. 1986;112:79–83. doi: 10.1016/0002-8703(86)90682-4. PubMed DOI

Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol. 1999;22:1372–7. doi: 10.1111/j.1540-8159.1999.tb00631.x. PubMed DOI

Ahmed FZ, Motwani M, Cunnington C et al. One-month global longitudinal strain identifies patients who will develop pacing-induced left ventricular dysfunction over time: the pacing and ventricular dysfunction (PAVD) study. PLoS One. 2017;12:e0162072. doi: 10.1371/journal.pone.0162072. PubMed DOI PMC

Lee WC, Fang HY, Chen HC et al. Post-pacemaker implant QRS duration and heart failure admission in patients with sick sinus syndrome and complete atrioventricular block. ESC Heart Fail. 2019;6:686–93. doi: 10.1002/ehf2.12445. PubMed DOI PMC

Poole JE, Singh JP, Birgersdotter-Green U. QRS duration or QRS morphology; what really matters in cardiac resynchronization therapy? J Am Coll Cardiol. 2016;67:1104–17. doi: 10.1016/j.jacc.2015.12.039. PubMed DOI

van Deursen CJM, Blaauw Y, Witjens MI et al. The value of the 12-lead ECG for evaluation and optimization of cardiac resynchronization therapy in daily clinical practice. J Electrocardiol. 2014;47:202–11. doi: 10.1016/j.jelectrocard.2014.01.007. PubMed DOI

Heckman LIB, Luermans JGLM, Curila K et al. Comparing ventricular synchrony in left bundle branch and left ventricular septal pacing in pacemaker patients. J Clin Med. 2021;10:822. doi: 10.3390/jcm10040822. PubMed DOI PMC

Kors JA, van Herpen G, Sittig AC, van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J. 1990;11:1083–92. doi: 10.1093/oxfordjournals.eurheartj.a059647. PubMed DOI

Plesinger F, van Stipdonk AMW, Smisek R et al. Fully automated QRS area measurement for predicting response to cardiac resynchronization therapy. J Electrocardiol. 2020;63:159–63. doi: 10.1016/j.jelectrocard.2019.07.003. PubMed DOI

van Stipdonk AMW, ter Horst I, Kloosterman M et al. QRS area is a strong determinant of outcome in cardiac resynchronization therapy. Circ Arrhythm Electrophysiol. 2018;11:e006497. doi: 10.1161/CIRCEP.118.006497. PubMed DOI

Ghossein MA, van Stipdonk AMW, Plesinger F et al. Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. J Cardiovasc Electrophysiol. 2021;32:813–22. doi: 10.1111/jce.14910. PubMed DOI PMC

Mafi Rad M, Wijntjens GWM, Engels EB et al. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm. 2016;13:217–25. doi: 10.1016/j.hrthm.2015.07.033. PubMed DOI

Sedova K, Repin K, Donin G et al. Clinical utility of body surface potential mapping in CRT patients. Arrhythm Electrophysiol Rev. 2021;10:113–9. doi: 10.15420/aer.2021.14. PubMed DOI PMC

Eschalier R, Ploux S, Lumens J et al. Detailed analysis of ventricular activation sequences during right ventricular apical pacing and left bundle branch block and the potential implications for cardiac resynchronization therapy. Heart Rhythm. 2015;12:137–43. doi: 10.1016/j.hrthm.2014.09.059. PubMed DOI

Gage RM, Curtin AE, Burns KV et al. Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in patients with cardiac resynchronization therapy. Heart Rhythm. 2017;14:392–9. doi: 10.1016/j.hrthm.2016.11.019. PubMed DOI

Ben Johnson WB, Vatterott PJ, Peterson MA et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: relationship with acute hemodynamic improvement. Heart Rhythm. 2017;14:385–91. doi: 10.1016/j.hrthm.2016.11.017. PubMed DOI

Jurak P, Curila K, Leinveber P et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J Cardiovasc Electrophysiol. 2020;31:300–7. doi: 10.1111/jce.14299. PubMed DOI

Jurak P, Bear LR, Nguyên UC et al. 3-dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance. Sci Rep. 2021;11:11469. doi: 10.1038/s41598-021-90963-4. PubMed DOI PMC

Curila K, Jurak P, Halamek J et al. Ventricular activation pattern assessment during right ventricular pacing: ultra-high-frequency ECG study. J Cardiovasc Electrophysiol. 2021;32:1385–94. doi: 10.1111/jce.14985. PubMed DOI

Zografos TA, Siontis KC, Jastrzebski M et al. Apical vs. non-apical right ventricular pacing in cardiac resynchronization therapy: a meta-analysis. EP Europace. 2015;17:1259–66. doi: 10.1093/europace/euv048. PubMed DOI

Da Costa A, Gabriel L, Romeyer-Bouchard C et al. Focus on right ventricular outflow tract septal pacing. Arch Cardiovasc Dis. 2013;106:394–403. doi: 10.1016/j.acvd.2012.08.005. PubMed DOI

Funck RC, Mueller HH, Lunati M et al. Characteristics of a large sample of candidates for permanent ventricular pacing included in the biventricular pacing for atrio-ventricular block to prevent cardiac desynchronization study (BioPace). Europace. 2014;16:354–62. doi: 10.1093/europace/eut343. PubMed DOI

Curtis AB, Worley SJ, Chung ES et al. Improvement in clinical outcomes with biventricular versus right ventricular pacing: the BLOCK HF study. J Am Coll Cardiol. 2016;67:2148–57. doi: 10.1016/j.jacc.2016.02.051. PubMed DOI

Domenichini G, Sunthorn H, Fleury E et al. Pacing of the interventricular septum versus the right ventricular apex: a prospective, randomized study. Eur J Intern Med. 2012;23:621–7. doi: 10.1016/j.ejim.2012.03.012. PubMed DOI

Curila K, Prochazkova R, Jurak P et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2020;17:607–14. doi: 10.1016/j.hrthm.2019.11.016. PubMed DOI

Curila K, Jurak P, Jastrzebski M et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18:1281–9. doi: 10.1016/j.hrthm.2021.04.025. PubMed DOI

Abdelrahman M, Subzposh FA, Beer D et al. Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol. 2018;71:2319–30. doi: 10.1016/j.jacc.2018.02.048. PubMed DOI

Upadhyay GA, Vijayaraman P, Nayak HM et al. His corrective pacing or biventricular pacing for cardiac resynchronization in heart failure. J Am Coll Cardiol. 2019;74:157–9. doi: 10.1016/j.jacc.2019.04.026. PubMed DOI

Sharma PS, Ellenbogen KA, Trohman RG. Permanent His bundle pacing: the past, present, and future. J Cardiovasc Electrophysiol. 2017;28:458–65. doi: 10.1111/jce.13154. PubMed DOI

Teigeler T, Kolominsky J, Vo C et al. Intermediate-term performance and safety of His-bundle pacing leads: a single-center experience. Heart Rhythm. 2021;18:743–9. doi: 10.1016/j.hrthm.2020.12.031. PubMed DOI

Sharma PS, Patel NR, Ravi V et al. Clinical outcomes of left bundle branch area pacing compared to right ventricular pacing: results from the Geisinger-Rush Conduction System Pacing registry. Heart Rhythm. 2022;19:3–11. doi: 10.1016/j.hrthm.2021.08.033. PubMed DOI

Ghossein MA, Zanon F, Salden F et al. Left ventricular lead placement guided by reduction in QRS area. J Clin Med. 2021;10:5935. doi: 10.3390/jcm10245935. PubMed DOI PMC

Bank AJ, Gage RM, Curtin AE et al. Body surface activation mapping of electrical dyssynchrony in cardiac resynchronization therapy patients: potential for optimization. J Electrocardiol. 2018;51:534–41. doi: 10.1016/j.jelectrocard.2017.12.004. PubMed DOI

Ploux S, Eschalier R, Whinnett ZI et al. Electrical dyssynchrony induced by biventricular pacing: implications for patient selection and therapy improvement. Heart Rhythm. 2015;12:782–91. doi: 10.1016/j.hrthm.2014.12.031. PubMed DOI

Pereira H, Jackson TA, Sieniewicz B et al. Non-invasive electrophysiological assessment of the optimal configuration of quadripolar lead vectors on ventricular activation times. J Electrocardiol. 2018;51:714–9. doi: 10.1016/j.jelectrocard.2018.05.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...