Clinical Utility of Body Surface Potential Mapping in CRT Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
34401184
PubMed Central
PMC8335851
DOI
10.15420/aer.2021.14
Knihovny.cz E-zdroje
- Klíčová slova
- Body surface potential mapping, CRT, ECG imaging, heart failure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper reviews the current status of the knowledge on body surface potential mapping (BSPM) and ECG imaging (ECGI) methods for patient selection, left ventricular (LV) lead positioning, and optimisation of CRT programming, to indicate the major trends and future perspectives for the application of these methods in CRT patients. A systematic literature review using PubMed, Scopus, and Web of Science was conducted to evaluate the available clinical evidence regarding the usage of BSPM and ECGI methods in CRT patients. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement was used as a basis for this review. BSPM and ECGI methods applied in CRT patients were assessed, and quantitative parameters of ventricular depolarisation delivered from BSPM and ECGI were extracted and summarised. BSPM and ECGI methods can be used in CRT in several ways, namely in predicting CRT outcome, in individualised optimisation of CRT device programming, and the guiding of LV electrode placement, however, further prospective or randomised trials are necessary to verify the utility of BSPM for routine clinical practice.
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Cardiology University Medical Center Utrecht Utrecht the Netherlands
Zobrazit více v PubMed
Thomas G, Kim J, Lerman BB. Improving cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev. 2019;8:220–7. doi: 10.15420/aer.2018.62.3. PubMed DOI PMC
Pujol-Lopez M, San Antonio R, Mont L et al. Electrocardiographic optimization techniques in resynchronization therapy. Europace. 2019;21:1286–96. doi: 10.1093/europace/euz126. PubMed DOI
Gage RM, Curtin AE, Burns KV et al. Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in cardiac resynchronization therapy patients. Heart Rhythm. 2017;14:392–9. doi: 10.1016/j.hrthm.2016.11.019. PubMed DOI
Bear LR, Huntjens PR, Walton RD et al. Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm. 2018;15:1058–69. doi: 10.1016/j.hrthm.2018.02.024. PubMed DOI
Strik M, Ploux S, Huntjens PR et al. Response to cardiac resynchronization therapy is determined by intrinsic electrical substrate rather than by its modification. Int J Cardiol. 2018;270:143–8. doi: 10.1016/j.ijcard.2018.06.005. PubMed DOI
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC
Arnold AD, Shun-Shin MJ, Keene D et al. His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2018;72:3112–22. doi: 10.1016/j.jacc.2018.09.073. PubMed DOI PMC
Bank AJ, Gage RM, Curtin AE et al. Body surface activation mapping of electrical dyssynchrony in cardiac resynchronization therapy patients: potential for optimization. J Electrocardiol. 2018;51:534–41. doi: 10.1016/j.jelectrocard.2017.12.004. PubMed DOI
Berger T, Hanser F, Hintringer F et al. Effects of cardiac resynchronization therapy on ventricular repolarization in patients with congestive heart failure. J Cardiovasc Electrophysiol. 2005;16:611–17. doi: 10.1046/j.1540-8167.2005.40496.x. PubMed DOI
Dawoud F, Spragg DD, Berger RD et al. Non-invasive electromechanical activation imaging as a tool to study left ventricular dyssynchronous patients: implication for CRT therapy. J Electrocardiol. 2016;49:375–82. doi: 10.1016/j.jelectrocard.2016.02.011. PubMed DOI
Ghosh S, Silva JNA, Canham RM et al. Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm. 2011;8:692–9. doi: 10.1016/j.hrthm.2011.01.017. PubMed DOI PMC
Jia P, Ramanathan C, Ghanem RN et al. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm. 2006;3:296–310. doi: 10.1016/j.hrthm.2005.11.025. PubMed DOI PMC
Johnson WB, Vatterott PJ, Peterson MA et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: relationship with acute hemodynamic improvement. Heart Rhythm. 2017;14:385–91. doi: 10.1016/j.hrthm.2016.11.017. PubMed DOI
Kittnar O, Riedlbauchova L, Adla T et al. Outcome of resynchronization therapy on superficial and endocardial electrophysiological findings. Physiol Res. 2018;67:601–10. doi: 10.33549/physiolres.934056. PubMed DOI
Lumens J, Ploux S, Strik M et al. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J Am Coll Cardiol. 2013;62:2395–403. doi: 10.1016/j.jacc.2013.08.715. PubMed DOI PMC
Nguyen UC, Cluitmans MJM, Strik M et al. Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. Europace. 2019;21:626–35. doi: 10.1093/europace/euy292. PubMed DOI
Pastore CA, Tobias N, Samesima N et al. Body surface potential mapping investigating the ventricular activation patterns in the cardiac resynchronization of patients with left bundle-branch block and heart failure. J Electrocardiol. 2006;39:93–102. doi: 10.1016/j.jelectrocard.2005.07.004. PubMed DOI
Pereira H, Jackson TA, Sieniewicz B et al. Non-invasive electrophysiological assessment of the optimal configuration of quadripolar lead vectors on ventricular activation times. J Electrocardiol. 2018;51:714–19. doi: 10.1016/j.jelectrocard.2018.05.006. PubMed DOI
Pereira H, Jackson TA, Claridge S et al. Comparison of echocardiographic and electrocardiographic mapping for cardiac resynchronisation therapy optimisation. Cardiol Res Pract. 2019;2019:4351693. doi: 10.1155/2019/4351693. PubMed DOI PMC
Ploux S, Lumens J, Whinnett Z et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61:2435–43. doi: 10.1016/j.jacc.2013.01.093. PubMed DOI
Ploux S, Eschalier R, Whinnett ZI et al. Electrical dyssynchrony induced by biventricular pacing: implications for patient selection and therapy improvement. Heart Rhythm. 2015;12:782–91. doi: 10.1016/j.hrthm.2014.12.031. PubMed DOI
Rudy Y. Noninvasive electrocardiographic imaging of cardiac resynchronization therapy in patients with heart failure. J Electrocardiol. 2006;39:28–30. doi: 10.1016/j.jelectrocard.2006.03.012. PubMed DOI PMC
Samesima N, Douglas R, Tobias N et al. Twenty-millisecond interventricular difference as assessed by body surface potential mapping identifies patients with clinical improvement after implantation of cardiac resynchronization device. Anadolu Kardiyol Derg. 2007;7((Suppl 1)):213–5. PubMed
Samesima N, Pastore CA, Douglas RA et al. Improved relationship between left and right ventricular electrical activation after cardiac resynchronization therapy in heart failure patients can be quantified by body surface potential mapping. Clinics. 2013;68:986–91. doi: 10.6061/clinics/2013(07)16. PubMed DOI PMC
Shannon J, Navarro CO, McEntee T et al. An early phase of slow myocardial activation may be necessary in order to benefit from cardiac resynchronization therapy. J Electrocardiol. 2008;41:531–5. doi: 10.1016/j.jelectrocard.2008.07.028. PubMed DOI
Sieniewicz BJ, Jackson T, Claridge S et al. Optimization of CRT programming using non-invasive electrocardiographic imaging to assess the acute electrical effects of multipoint pacing. J Arrhythm. 2019;35:267–75. doi: 10.1002/joa3.12153. PubMed DOI PMC
Varma N. Variegated left ventricular electrical activation in response to a novel quadripolar electrode: visualization by non-invasive electrocardiographic imaging. J Electrocardiol. 2014;47:66–74. doi: 10.1016/j.jelectrocard.2013.09.001. PubMed DOI
Sorgente A, Cappato R. A critical reappraisal of the current clinical indications to cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev. 2013;2:91–4. doi: 10.15420/aer.2013.2.2.91. PubMed DOI PMC
Auger D, Bleeker GB, Bertini M et al. Effect of cardiac resynchronization therapy in patients without left intraventricular dyssynchrony. Eur Heart J. 2012;33:913–20. doi: 10.1093/eurheartj/ehr468. PubMed DOI PMC
Bleeker GB, Schalij MJ, Molhoek SG et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15:544–9. doi: 10.1046/j.1540-8167.2004.03604.x. PubMed DOI
Seger M, Hanser F, Dichtl W et al. Non-invasive imaging of cardiac electrophysiology in a cardiac resynchronization therapy defibrillator patient with a quadripolar left ventricular lead. Europace. 2014;16:743–9. doi: 10.1093/europace/euu045. PubMed DOI
Lambiase PD, Rinaldi A, Hauck J et al. Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy. Heart. 2004;90:44–51. doi: 10.1136/heart.90.1.44. PubMed DOI PMC
Upadhyay GA, Vijayaraman P, Nayak HM et al. His corrective pacing or biventricular pacing for cardiac resynchronization in heart failure. J Am Coll Cardiol. 2019;74:157–9. doi: 10.1016/j.jacc.2019.04.026. PubMed DOI
Vatasescu R, Berruezo A, Mont L et al. Midterm ‘super-response’ to cardiac resynchronization therapy by biventricular pacing with fusion: insights from electro-anatomical mapping. Europace. 2009;11:1675–82. doi: 10.1093/europace/eup333. PubMed DOI PMC
Rigol M, Solanes N, Fernandez-Armenta J et al. Development of a swine model of left bundle branch block for experimental studies of cardiac resynchronization therapy. J Cardiovasc Trans Res. 2013;6:616–22. doi: 10.1007/s12265-013-9464-1. PubMed DOI
Lee AWC, Costa CM, Strocchi M et al. Computational modeling for cardiac resynchronization therapy. J Cardiovasc Trans Res. 2018;11:92–108. doi: 10.1007/s12265-017-9779-4. PubMed DOI PMC
Jurak P, Curila K, Leinveber P et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J Cardiovasc Electrophysiol. 2020;31:300–7. doi: 10.1111/jce.14299. PubMed DOI
Muthalaly RG, Evans RM. Applications of machine learning in cardiac electrophysiology. Arrhythm Electrophysiol Rev. 2020;9:71–7. doi: 10.15420/aer.2019.19. PubMed DOI PMC
van de Leur RR, Boonstra MJ, Bagheri A et al. Big data and artificial intelligence: opportunities and threats in electrophysiology. Arrhythm Electrophysiol Rev. 2020;9:146–54. doi: 10.15420/aer.2020.26. PubMed DOI PMC
Feeny AK, Rickard J, Patel D et al. Machine learning prediction of response to cardiac resynchronization therapy: improvement versus current guidelines. Circ Arrhythm Electrophysiol. 2019;12:e007316. doi: 10.1161/CIRCEP.119.007316. PubMed DOI PMC
Kalscheur MM, Kipp RT, Tattersall MC et al. Machine learning algorithm predicts cardiac resynchronization therapy outcomes. Circ Arrhythm Electrophysiol. 2018;11:e005499. doi: 10.1161/circep.117.005499. PubMed DOI PMC
Hu S-Y, Santus E, Forsyth AW et al. Can machine learning improve patient selection for cardiac resynchronization therapy? PLoS One. 2019;14:e0222397. doi: 10.1371/journal.pone.0222397. PubMed DOI PMC
Misra S, van Dam PM, Chrispin J et al. Initial validation of a novel ECGI system for localization of premature ventricular contractions and ventricular tachycardia in structurally normal and abnormal hearts. J Electrocardiol. 2018;51:801–8. doi: 10.1016/j.jelectrocard.2018.05.018. PubMed DOI