• This record comes from PubMed

Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception

. 2016 Jun 20 ; 6 () : 28316. [epub] 20160620

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn't survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour.

See more in PubMed

Kukalová-Peck J. Fossil history and the evolution of hexapod structures In Insects of Australia: A Textbook for Students and Research Workers (eds Naumann I. D. et al.. ) Ch. 6, 141–179 (Melbourne University Press, 1991).

Bechly G. Phylogenetic classification of fossil and extant odonates. Available at: https://dl.dropboxusercontent.com/u/13756162/Website/odonata/system.htm (2007) (Accessed: 5th March 2016).

Sroka P., Staniczek A. H. & Bechly G. Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. J. Syst. Palaeont. 13, 963–982 (2015).

Engel M. S., Davis S. R. & Prokop J. Insect wings: the evolutionary development of Nature’s first fliers In Arthropod biology and evolution: molecules, development, morphology (eds Minelli A. G. et al.. ) Ch 12, 269–298 (Springer Verlag, 2013).

Li Y., Ren D., Pecharová M. & Prokop J. A new palaeodictyopterid (Insecta: Palaeodictyoptera: Spilapteridae) from the Upper Carboniferous of China supports a close relationship between insect faunas of Quilianshian (northern China) and Laurussia. Alcheringa 37, 487–495 (2013).

Pecharová M., Ren D. & Prokop J. A new palaeodictyopteroid (Megasecoptera: Brodiopteridae) from the Early Pennsylvanian of northern China reveals unique morphological traits and intra-specific variability. Alcheringa 39, 236–249 (2015).

Kukalová-Peck J. & Peck S. B. Adult and immature Calvertiellidae (Insecta: Palaeodictyoptera) from the Upper Palaeozoic of New Mexico and Czechoslovakia. Psyche 83, 79–93 (1976).

Rasnitsyn A. P. & Krassilov V. A. Pollen in the gut contents of fossil insects as evidence of co-evolution. Paleont. J. 30, 716–722 (1996).

Robin N. et al.. A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Curr. Biol. 26, 1–7, http://dx.doi.org/10.1016/j.cub.2016.03.068 (2016). PubMed DOI

Nel A. et al.. The earliest-known holometabolous insects. Nature 503, 257–261 (2013). PubMed

Grimaldi D. A., Bonwich E., Delannoy M. & Doberstein S. Electron microscopic studies of mummified tissues in amber fossils. Am. Mus. Nov. 3097, 1–31 (1994).

Fikáček M., Prokin A. & Angus R. B. A long-living species of the hydrophiloid beetles: Helophorus sibiricus from the early Miocene deposits of Kartashevo (Siberia, Russia) in Advances in the systematics of fossil and modern insects: Honouring Alexandr Rasnitsyn (eds Shcherbakov D. E. et al.. ) ZooKeys 130, 239–254 (2011). PubMed PMC

Fikáček M. et al.. Revision of Mesozoic fossils of the helophorid lineage of the superfamily Hydrophiloidea (Coleoptera: Polyphaga). Acta Entomol. Mus. Nat. Pragae 52, 89–127 (2012).

Cai Chen-Yang et al.. Early origin of parental care in Mesozoic carrion beetles. Proc. Nat. Acad. Sci. USA 111, 14170–14174 (2014). PubMed PMC

Prokop J. et al.. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).

Sharov A. G. Morphological features and habit of palaeodictyopterans In Voprosy paleontologii nasekomykh. [Problems of the Insect Palaeontology. Lectures on the XXIV Annual Readings in Memory of N.A. Kholodkovsky (1–2 April, 1971)] (ed Narchuk, ) 49–63 (Nauka, 1973).

Kukalová-Peck J. The ‘Uniramia’ do not exist: The ground plan of the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta: Palaeodictyopteroidea). Can. J. Zool. 70, 236–255 (1992).

Sinitshenkova N. D. & Kukalová-Peck J. Permuralia – a new name for Uralia Kukalová-Peck, Sinitshenkova, 1992 (Insecta: Diaphanopterida = Diaphanopteridea). Paleont. J. 31, 4, 95 (1997).

Rasnitsyn A. P. & Novokshonov V. G. On the morphology of Uralia maculata from the Early Permian (Kungurian) of Ural (Russia). Entomol. Scand. 28, 1, 27–38 (1997).

Laurentiaux D. Découverte d’un rostre chez Stenodictya lobata Brgt. (Paléodictyoptère Sténodictyide) et le problème des Protohémiptères. Bull. Soc. Geol. Fr. 6, 233–247 (1953).

Kukalová-Peck J. Unusual structures in the Paleozoic insect orders Megasecoptera and Palaeodictyoptera with description of a new family. Psyche 79, 243–260 (1972).

Pecharová M., Prokop J. & Ren D. Early Pennsylvanian aykhalids from Xiaheyan of northern China and their palaeogeographical significance (Insecta: Megasecoptera). CR Palevol 14, 613–624 (2015).

Shear W. A. & Kukalová-Peck J. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68, 1807–1834 (1989).

Labandeira C. C. & Phillips T. L. Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing and sucking functional feeding group. Ann. Entomol. Soc. Am. 89, 2, 157–183 (1996).

Shcherbakov D. E., Makarkin V. N., Aristov D. S. & Vasilenko D. V. Permian insects from the Russky Island, South Primorye. Russ. Entomol. J. 18, 1, 7–16 (2009).

Wootton R. J. & Kukalová-Peck J. Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biol. Rev. 75, 129–167 (2000). PubMed

Bocharova-Messner O. M. & Dmitriev A. Z. Morphological and functional analysis of the wing venation in Odonata according to the data of the scanning electron microscopy In IX Congress of All-Union Entomol. Soc. Abstr. Theses 65–65 (Naukova Dumka, 1984).

D’Andrea M. & Carfi S. Spines on the wing veins in Odonata. 1. Zygoptera. Odonatologica 17, 313–335 (1988).

D’Andrea M. & Carfi S. Spines on the wing veins in Odonata. 2. Anisozygoptera and Anisoptera. Odonatologica 18, 147–178 (1989).

Gorb S. N. Attachment devices of insect cuticle. 1–305 (Kluwer Academic Publishers, 2002).

Edmunds G. F. Jr. & McCafferty W. P. The mayfly subimago. Ann. Rev. Entomol. 33, 509–529 (1988).

Brongniart C. Les insectes fossiles des terrains primaires. Coup d’oeil rapide sur la faune entomologique des terrains paléozoïques. Bull. Soc. des Amis Sci. Natur. Rouen 3, 50–68 (1885).

Brongniart C. Recherches pour servir à l’histoire des insectes fossiles des temps primaires précédées d’une étude sur la nervation des ailes des insectes. Bull. Soc. Indust. Minér. Saint-Etienne 3, 7, 1–491 (1893).

Handlirsch A. Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. 1–1430 (Engelman, Leipzig, 1906–1908).

Carpenter F. M. & Richardson E. S. Megasecopterous nymphs in Pennsylvanian concretions from Illinois. Psyche 75, 4, 295–309 (1968).

Watson J. A., Cribb B. W., Hu H.-M. & Watson G. S. A Dual Layer Hair Array of the Brown Lacewing: Repelling Water at Different Length Scales. Biophys. J. 100, 1149–1155 (2011). PubMed PMC

Carpenter F. M. Treatise on Invertebrate Paleontology, Part R, Arthropoda 4, vols 3, 4 (Hexapoda). (University of Kansas Press, 1992).

Carpenter F. M. A Permian Megasecoptera from Texas. Psyche 69, 1, 37–41 (1962).

Carpenter F. M. Studies on North American Carboniferous insects. Part 5. Palaeodictyoptera and Megasecoptera from Illinois and Tennessee with a discussion of the order Sypharopteroidea. Psyche 74, 1, 58–84 (1967).

Bolton H. A monograph of the fossil insects of the British coal measures. Palaeont. Soc. Monogr. 73, 1–80 (1921).

Tillyard R. J. The panorpoid complex. Part 2: - The wing-trichiation and its relationships to the general scheme of venation. Proc. Linn. Soc. N. S. W. 43, 626–657 (1918).

Fraser F. C. A note on the evolution of some venational structures in the dragonfly wing. Proc. Roy. Entomol. Soc. (A) 17, 64–69 (1942).

Carpenter F. M. A Megasecopteron from Upper Carboniferous strata in Spain. Psyche 70, 44–49 (1963).

Prokop J. & Ren D. New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera). Eur. J. Entomol. 104, 267–275 (2007).

Kukalová J. Revisional study of the order Palaeodictyoptera in the Upper Carboniferous shales of Commentry, France. Part 2. Psyche 76, 439–486 (1969).

Novokshonov V. G. & Willmann R. On the morphology of Asthenohymen uralicum (Insecta; Diaphanopterida: Asthenohymenidae) from the Lower Permian of the Urals. Paleont. J. 33, 539–545 (1999).

Carpenter F. M. The Lower Permian insects of Kansas. Part 8. Additional Megasecoptera, Protodonata, Odonata, Homoptera Psocoptera, Plecoptera, and Protoperlaria. Proc. Am. Acad. Arts Sci. 73, 3, 29–70 (1939).

Nelson C. R. & Tidwell W. D. Brodioptera stricklani n. sp. (Megasecoptera: Brodiopteridae), a new fossil insect from the upper Manning Canyon Shale Formation, Utah (Lowermost Namurian B). Psyche 94, 309–316 (1987).

Tillyard R. J. Kansas Permian insects. 15. The order Plectoptera. Am. J. Sci. 5, 23, 97–134 + 236–272 (1932).

Hennig W. Insect phylogeny. 1–514 (Wiley, J. & Sons Inc., 1981).

Bechly G., Brauckmann C., Zessin W. & Gröning E. New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). Z. Zool. Syst. Evolutionsforsch. 39, 4, 209–226 (2001).

Matushkina N. A. & Lambret P. H. Ovipositor morphology and egg laying behaviour in the dragonfly Lestes macrostigma (Zygoptera: Lestidae). Int. J. Odonatology 14, 69–82 (2011).

Matushkina N. A. & Gorb S. N. Stylus of the odonate endophytic ovipositor: a mechanosensory organ controlling egg positioning. J. Insect Physiol. 48, 213–219 (2002). PubMed

Béthoux O., Galtier J. & Nel A. Oldest evidence of insect endophytic oviposition. Palaios 19, 4, 408–413 (2004).

Moisan P. et al.. Lycopsid–arthropod associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 6–15 (2012).

Laaß M. & Hoff C. The earliest evidence of damselfly-like endophytic oviposition in the fossil record. Lethaia 48, 115–124 (2015).

Dudley R. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J. Exp. Biol. 201, 1043–1050 (1998). PubMed

Chapman R. F. The insects: structure and function. (eds Simpson S. J. & Douglas A. E. ) 5th Ed., 1–929 (Cambridge University Press, 2013).

Bauernfeind E. & Soldán T. The Mayflies of Europe (Ephemeroptera). 1–781 (Apollo Books, 2012).

Matushkina N. A. The ovipositor of the relic dragonfly Epiophlebia superstes: a morphological re-examination (Odonata: Epiophlebiidae). Int. J. Odonatology 11, 71–80 (2008).

Lameere A. Sur la nervation alaire des insectes. Bull. Class. Sci. Acad. Roy. Belgique 8, 138–149 (1922).

Zhang Z., Schneider J. W. & Hong Y. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J. Syst. Palaeont. 11, 27–40 (2013).

Wang J. Late Paleozoic macrofloral assemblages from Weibei Coal-field, with reference to vegetational change through the Late PaleozoicIce-age in the North China Block. Int. J. Coal Geol. 83, 292–317 (2010).

Xie X., Wang Y. & Shen H. Facies analysis and sedimentary environment reconstruction of the Late Carboniferous in Zhongwei, Ningxia. Acta Sedimentol. Sin. 22, 19–28 (2004).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...