New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta)
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29321486
PubMed Central
PMC5762858
DOI
10.1038/s41598-017-18615-0
PII: 10.1038/s41598-017-18615-0
Knihovny.cz E-resources
- MeSH
- Models, Anatomic * MeSH
- Insecta anatomy & histology MeSH
- Wings, Animal blood supply MeSH
- Veins * MeSH
- Fossils MeSH
- Imaging, Three-Dimensional MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Being implied in flight, mimetism, communication, and protection, the insect wings were crucial organs for the mega diversification of this clade. Despite several attempts, the problem of wing evolution remains unresolved because the basal parts of the veins essential for vein identification are hidden in the basivenal sclerites. The homologies between wing characters thus cannot be accurately verified, while they are of primary importance to solve long-standing problems, such as the monophyly of the Palaeoptera, viz. Odonatoptera, Panephemeroptera, and Palaeozoic Palaeodictyopterida mainly known by their wings. Hitherto the tools to homologize venation were suffering several cases of exceptions, rendering them unreliable. Here we reconstruct the odonatopteran venation using fossils and a new 3D imaging tool, resulting congruent with the concept of Riek and Kukalová-Peck, with important novelties, viz. median anterior vein fused to radius and radius posterior nearly as convex as radius anterior (putative synapomorphies of Odonatoptera); subcostal anterior (ScA) fused to costal vein and most basal primary antenodal crossvein being a modified posterior branch of ScA (putative synapomorphies of Palaeoptera). These findings may reveal critical for future analyses of the relationships between fossil and extant Palaeoptera, helping to solve the evolutionary history of the insects as a whole.
See more in PubMed
Misof B, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Wang Y-h, et al. Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda) Sci. Rep. 2016;6:38939. doi: 10.1038/srep38939. PubMed DOI PMC
Rutschmann, S. et al. Mitochondrial genomes infer phylogenetic relationships among the oldest extant winged insects (Palaeoptera). bioRxiv 10.1101/164459 (2017).
Ogden TH, Whiting MF. The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics. 2003;19:432–442. doi: 10.1111/j.1096-0031.2003.tb00313.x. PubMed DOI
Riek EF, Kukalová-Peck J. A new interpretation of dragonfly wing venation based upon Early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic characters states in pterygote wings. Can. J. Zool. 1984;62:1150–1166. doi: 10.1139/z84-166. DOI
Nel A, et al. Les ‘Anisozygoptera’ fossiles. Phylogénie et classification (Odonata) Martinia. 1993;3:1–311.
Trueman JWH. A brief history of the classification and nomenclature of Odonata. Zootaxa. 2007;1668:381–394.
Petrulevičius JF, Gutiérrez PR. New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina. Arquivos Entomolóxicos. 2016;16:341–358.
Sinitshenkova ND, Vasilenko DV. The latest record of mayflies of the family Protereismatidae Sellards (Ephemerida = Ephemeroptera) and a new species of the family Misthodotidae in the Upper Permian of Europe. Paleontol. J. 2012;46(1):61–65. doi: 10.1134/S0031030112010121. DOI
Kukalová-Peck J, Richardson ES. New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from Upper Carboniferous strata of Mazon Creek, Illinois. Can. J. Zool. 1983;61:1670–1687. doi: 10.1139/z83-218. DOI
Prokop J, et al. Paoliida, a putative stem-group of winged insects: morphology of new taxa from the Upper Carboniferous of Poland. Acta Palaeont. Polonica. 2012;57:161–173.
Ninomiya T, Yoshizawa K. A revised interpretation of the wing base structure in Odonata. Syst. Entomol. 2009;34:334–345. doi: 10.1111/j.1365-3113.2008.00455.x. DOI
Desutter-Grandcolas L, et al. 3-D imaging reveals four extraordinary cases of convergent evolution of acoustic communication in crickets and allies (Insecta) Sci. Rep. 2017;7(1):1–8. doi: 10.1038/s41598-017-06840-6. PubMed DOI PMC
Kukalová-Peck, J. Arthropod phylogeny and ‘basal’ morphological structures. pp. 249–268. In: Fortey, R.A. & Thomas, R.H. (eds). Arthropod Relationships. Systematics Association Special Volume Series, Chapman & Hall, London, 55 (1997).
Kukalová-Peck J. Phylogeny of higher taxa in Insecta: finding synapomorphies in the extant fauna and separating them from homoplasies. Evol. Biol. 2008;35:4–51. doi: 10.1007/s11692-007-9013-4. DOI
Nel A, et al. Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica, (A) 2009;289:89–121. doi: 10.1127/pala/289/2009/89. DOI
Prokop J, et al. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 2017;27:263–269. doi: 10.1016/j.cub.2016.11.021. PubMed DOI
Willkommen J, Hörnschemeyer T. The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confuse (Insecta: Ephemeroptera: Leptophlebiidae) Arthropod Struct. Dev. 2007;36:253–269. doi: 10.1016/j.asd.2007.01.003. PubMed DOI
Willkommen J. The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles. Stutt. Beitr. Naturk. (A), (N.S.) 2008;1:203–300. PubMed
Bechly G. Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der Phylogenetischen Systematik und des Grundplanes der *Odonata. Petalura Spec. 1996;2:1–402.
Kukalová-Peck J. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera) Palaeodiversity. 2009;2:169–198.
Fujiyama I. Late Triassic insects from Miné, Yamaguchi, Japan. Part 1. Odonata. Bull. Natl Sci. Mus. (C) 1991;17:9–56.
Bechly G. New fossil Odonata from the Upper Triassic of Italy, with a redescription of Italophlebia gervasutti, and a reclassification of Triassic dragonflies. Riv. Mus. Civ. Sci. Nat. E. Caffi. 1997;19:31–70.
Pritykina, L.N. [New Triassic Odonata of middle Asia.] In: Vishniakova, V.N., Dlussky, G.M. & Pritykina, L.N. (eds). Novye iskopaemye nasekomye s territorii SSSR. [New fossil insects from the territory of the U.S.S.R.] Trudy Paleont. Inst. Akad. nauk S.S.S.R., Moscow, 183, 5–42. [In Russian] (1981).
Tillyard RJ. Tarsophlebiopsis mayi n. g. et n. sp., a dragon-fly, found in the body-chamber of a Corallian ammonite. Geol. Mag. 1923;60:146–152. doi: 10.1017/S001675680008523X. DOI
Prokop J, et al. J. Syst. Paleont. 2017. A remarkable insect from the Pennsylvanian of the Joggins Formation in Nova Scotia, Canada: insights into unusual venation of Brodiidae and nymphs of Megasecoptera; pp. 1051–1065.
Zheng D, et al. The first Triassic ‘Protodonatan’ (Zygophlebiidae) from China: stratigraphical implications. Geol. Mag. 2017;154:169–174. doi: 10.1017/S0016756816000625. DOI
Prokop J, Ren D. New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera) Eur. J. Entomol. 2007;104:267–275. doi: 10.14411/eje.2007.041. DOI
Prokop J, et al. Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception. Sci. Rep. 2016;6:28316. doi: 10.1038/srep28316. PubMed DOI PMC