Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients

. 2021 Feb 17 ; 10 (4) : . [epub] 20210217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33671420

BACKGROUND: Left bundle branch area pacing (LBBAP) has recently been introduced as a novel physiological pacing strategy. Within LBBAP, distinction is made between left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP, no left bundle capture). OBJECTIVE: To investigate acute electrophysiological effects of LBBP and LVSP as compared to intrinsic ventricular conduction. METHODS: Fifty patients with normal cardiac function and pacemaker indication for bradycardia underwent LBBAP. Electrocardiography (ECG) characteristics were evaluated during pacing at various depths within the septum: starting at the right ventricular (RV) side of the septum: the last position with QS morphology, the first position with r' morphology, LVSP and-in patients where left bundle branch (LBB) capture was achieved-LBBP. From the ECG's QRS duration and QRS morphology in lead V1, the stimulus- left ventricular activation time left ventricular activation time (LVAT) interval were measured. After conversion of the ECG into vectorcardiogram (VCG) (Kors conversion matrix), QRS area and QRS vector in transverse plane (Azimuth) were determined. RESULTS: QRS area significantly decreased from 82 ± 29 µVs during RV septal pacing (RVSP) to 46 ± 12 µVs during LVSP. In the subgroup where LBB capture was achieved (n = 31), QRS area significantly decreased from 46 ± 17 µVs during LVSP to 38 ± 15 µVs during LBBP, while LVAT was not significantly different between LVSP and LBBP. In patients with normal ventricular activation and narrow QRS, QRS area during LBBP was not significantly different from that during intrinsic activation (37 ± 16 vs. 35 ± 19 µVs, respectively). The Azimuth significantly changed from RVSP (-46 ± 33°) to LVSP (19 ± 16°) and LBBP (-22 ± 14°). The Azimuth during both LVSP and LBBP were not significantly different from normal ventricular activation. QRS area and LVAT correlated moderately (Spearman's R = 0.58). CONCLUSIONS: ECG and VCG indices demonstrate that both LVSP and LBBP improve ventricular dyssynchrony considerably as compared to RVSP, to values close to normal ventricular activation. LBBP seems to result in a small, but significant, improvement in ventricular synchrony as compared to LVSP.

Zobrazit více v PubMed

Mills R.W., Cornelussen R.N., Mulligan L.J., Strik M., Rademakers L.M., Skadsberg N.D., van Hunnik A., Kuiper M., Lampert A., Delhaas T., et al. Left ventricular septal and left ven-tricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency. Circ. Arrhythmia Electrophysiol. 2009;2:571–579. doi: 10.1161/CIRCEP.109.882910. PubMed DOI

Mafi-Rad M., Luermans J.G.L.M., Blaauw Y., Janssen M., Crijns H.J., Prinzen F.W., Vernooy K. Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum. Circ. Arrhythmia Electrophysiol. 2016;9:e003344. doi: 10.1161/CIRCEP.115.003344. PubMed DOI

Huang W., Su L., Wu S., Xu L., Xiao F., Zhou X., Ellenbogen K.A. A Novel Pacing Strategy with Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Can. J. Cardiol. 2017;33:1736.e1–1736.e3. doi: 10.1016/j.cjca.2017.09.013. PubMed DOI

Hua W., Fan X., Li X., Niu H., Gu M., Ning X., Hu Y., Gold M.R., Zhang S. Comparison of Left Bundle Branch and His Bundle Pacing in Bradycardia Patients. JACC Clin. Electrophysiol. 2020;6:1291–1299. doi: 10.1016/j.jacep.2020.05.008. PubMed DOI

Hou X., Qian Z., Wang Y., Qiu Y., Chen X., Jiang H., Jiang Z., Wu H., Zhao Z., Zhou W., et al. Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum. EP Eur. 2019;21:1694–1702. doi: 10.1093/europace/euz188. PubMed DOI

Engels E.B., AlShehri S., Van Deursen C.J., Wecke L., Bergfeldt L., Vernooy K., Prinzen F.W. The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J. Electrocardiol. 2015;48:586–592. doi: 10.1016/j.jelectrocard.2015.04.001. PubMed DOI

Mafi Rad M., Wijntjens G.W., Engels E.B., Blaauw Y., Luermans J.G., Pison L., Crijns H.J., Prinzen F.W., Vernooy K. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm. 2016;13:217–225. doi: 10.1016/j.hrthm.2015.07.033. PubMed DOI

van Stipdonk A.M.W., Ter Horst I., Kloosterman M., Engels E.B., Rienstra M., Crijns H., Vos M., Van Gelder I., Prinzen F.W., Meine M., et al. QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy. Circ. Arrhythmia Electrophysiol. 2018;11:e006497. doi: 10.1161/CIRCEP.118.006497. PubMed DOI

Huang W., Chen X., Su L., Wu S., Xia X., Vijayaraman P. A beginner’s guide to permanent left bundle branch pacing. Hearth Rhythm. 2019;16:1791–1796. doi: 10.1016/j.hrthm.2019.06.016. PubMed DOI

Engels E.B., Vegh E.M., Van Deursen C.J., Vernooy K., Singh J.P., Prinzen F.W. T-wave area predicts response to cardiac resyn-chronization therapy in patients with left bundle branch block. J. Cardiovasc. Electrophysiol. 2015;26:176–183. doi: 10.1111/jce.12549. PubMed DOI

Kors J.A., van Herpen G., Sittig A.C., van Bemmel J.H. Reconstruction of the Frank vectorcardiogram from standard electro-cardiographic leads: Diagnostic comparison of different methods. Eur. Heart J. 1990;11:1083–1092. doi: 10.1093/oxfordjournals.eurheartj.a059647. PubMed DOI

Gupta A., Parakh N., Bansal R., Verma S.K., Roy A., Sharma G., Yadav R., Naik N., Juenja R., Bahl V.K. Correlation of pacing site in right ventricle with paced QRS complex duration. Indian Pacing Electrophysiol. J. 2018;18:210–216. doi: 10.1016/j.ipej.2018.08.001. PubMed DOI PMC

Khurshid S., Liang J.J., Owens A., Lin D., Schaller R., Epstein A.E., Marchlinski F.E., Frankel D.S. Longer Paced QRS Duration is Associated with Increased Prevalence of Right Ventricular Pacing-Induced Cardiomyopathy. J. Cardiovasc. Electrophysiol. 2016;27:1174–1179. doi: 10.1111/jce.13045. PubMed DOI

Khurshid S., Epstein A.E., Verdino R.J., Lin D., Goldberg L.R., Marchlinski F.E., Frankel D.S. Incidence and predictors of right ventricular pacing-induced cardiomyopathy. Heart Rhythm. 2014;11:1619–1625. doi: 10.1016/j.hrthm.2014.05.040. PubMed DOI

Nielsen J.C., Kristensen L., Andersen H.R., Mortensen P.T., Pedersen O.L., Pedersen A.K. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: Echocardiographic and clinical outcome. J. Am. Coll. Cardiol. 2003;42:614–623. doi: 10.1016/S0735-1097(03)00757-5. PubMed DOI

Sweeney M.O., Hellkamp A.S., Ellenbogen K.A., Greenspon A.J., Freedman R.A., Lee K.L., Lamas G.A. Adverse Effect of Ventricular Pacing on Heart Failure and Atrial Fibrillation Among Patients with Normal Baseline QRS Duration in a Clinical Trial of Pacemaker Therapy for Sinus Node Dysfunction. Circulation. 2003;107:2932–2937. doi: 10.1161/01.CIR.0000072769.17295.B1. PubMed DOI

Chen K., Li Y., Dai Y., Sun Q., Luo B., Li C., Zhang S. Comparison of electrocardiogram characteristics and pacing parameters between left bundle branch pacing and right ventricular pacing in patients receiving pacemaker therapy. EP Eur. 2018;21:673–680. doi: 10.1093/europace/euy252. PubMed DOI

Gao M.-Y., Tian Y., Shi L., Wang Y.-J., Xie B.-Q., Qi J., Zeng L.-J., Li X.-X., Yang X.-C., Liu X.-P. Electrocardiographic morphology during left bundle branch area pacing: Characteristics, underlying mechanisms, and clinical implications. Pacing Clin. Electrophysiol. 2020;43:297–307. doi: 10.1111/pace.13884. PubMed DOI

Jastrzębski M., Kiełbasa G., Moskal P., Bednarek A., Kusiak A., Sondej T., Bednarski A., Rajzer M., Vijayaraman P. Fixation beats: A novel marker for reaching the left bundle branch area during deep septal lead implantation. Heart Rhythm. 2020 doi: 10.1016/j.hrthm.2020.12.019. online ahead of print. PubMed DOI

Ghossein M.A., van Stipdonk A.M.W., Plesinger F., Kloosterman M., Wouters P.C., Salden O.A.E., Meine M., Maass A.H., Prinzen F.W., Vernooy K. Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. J. Cardiovasc. Electrophysiol. 2021 doi: 10.1111/jce.14910. PubMed DOI PMC

Li X., Li H., Ma W., Ning X., Liang E., Pang K., Yao Y., Hua W., Zhang S., Fan X. Permanent left bundle branch area pacing for atrioventricular block: Feasibility, safety, and acute effect. Heart Rhythm. 2019;16:1766–1773. doi: 10.1016/j.hrthm.2019.04.043. PubMed DOI

Cai B., Huang X., Li L., Guo J., Chen S., Meng F., Wang H., Lin B., Su M. Evaluation of cardiac synchrony in left bundle branch pacing: Insights from echocardiographic research. J. Cardiovasc. Electrophysiol. 2020;31:560–569. doi: 10.1111/jce.14342. PubMed DOI PMC

Chan J.Y.S., Huang W.J., Yan B. Non-invasive electrocardiographic imaging of His-bundle and peri-left bundle pacing in left bundle branch block. Europace. 2018;21:837. doi: 10.1093/europace/euy293. PubMed DOI

Salden F.C., Luermans J.G., Westra S.W., Weijs B., Engels E.B., Heckman L.I., Lamerichs L.J., Janssen M.H., Clerx K.J., Cornelussen R., et al. Short-Term Hemodynamic and Electrophysiological Effects of Cardiac Resynchronization by Left Ventricular Septal Pacing. J. Am. Coll. Cardiol. 2020;75:347–359. doi: 10.1016/j.jacc.2019.11.040. PubMed DOI

Jurak P., Curila K., Leinveber P., Prinzen F.W., Viscor I., Plesinger F., Smisek R., Prochazkova R., Osmancik P., Halamek J., et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2019;31:300–307. doi: 10.1111/jce.14299. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Assessment of ventricular electrical heterogeneity in left bundle branch pacing and left ventricular septal pacing by using various electrophysiological methods

. 2024 Dec ; 35 (12) : 2282-2292. [epub] 20240923

Left ventricular septal pacing - can we trust the ECG?

. 2023 Sep-Oct ; 23 (5) : 155-157. [epub] 20230708

EHRA clinical consensus statement on conduction system pacing implantation: endorsed by the Asia Pacific Heart Rhythm Society (APHRS), Canadian Heart Rhythm Society (CHRS), and Latin American Heart Rhythm Society (LAHRS)

. 2023 Apr 15 ; 25 (4) : 1208-1236.

EHRA clinical consensus statement on conduction system pacing implantation: executive summary. Endorsed by the Asia-Pacific Heart Rhythm Society (APHRS), Canadian Heart Rhythm Society (CHRS) and Latin-American Heart Rhythm Society (LAHRS)

. 2023 Apr 15 ; 25 (4) : 1237-1248.

Left bundle branch area pacing outcomes: the multicentre European MELOS study

. 2022 Oct 21 ; 43 (40) : 4161-4173.

Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-high-frequency ECG and Other Dyssynchrony Assessment Tools

. 2022 Apr ; 11 () : e17.

Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing

. 2021 ; 8 () : 787414. [epub] 20211207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...