Assessment of ventricular electrical heterogeneity in left bundle branch pacing and left ventricular septal pacing by using various electrophysiological methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
Medtronic
PubMed
39313856
PubMed Central
PMC11650391
DOI
10.1111/jce.16435
Knihovny.cz E-zdroje
- Klíčová slova
- bradycardia pacing, cardiac resynchronization therapy, conduction system pacing, dyssynchrony, left bundle branch area pacing,
- MeSH
- akční potenciály * MeSH
- blokáda Tawarova raménka patofyziologie terapie diagnóza MeSH
- bradykardie patofyziologie terapie diagnóza MeSH
- časové faktory MeSH
- elektrofyziologické techniky kardiologické MeSH
- elektrokardiografie MeSH
- funkce levé komory srdeční * MeSH
- Hisův svazek * patofyziologie MeSH
- kardiostimulace umělá * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezikomorová přepážka * patofyziologie MeSH
- prediktivní hodnota testů * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- srdeční frekvence * MeSH
- srdeční resynchronizační terapie MeSH
- vektorkardiografie * metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
INTRODUCTION: Left bundle branch area pacing (LBBAP) comprises pacing at the left ventricular septum (LVSP) or left bundle branch (LBBP). The aim of the present study was to investigate the differences in ventricular electrical heterogeneity between LVSP, LBBP, right ventricular pacing (RVP) and intrinsic conduction with different dyssynchrony measures using the ECG, vectorcardiograpy, ECG belt, and Ultrahigh frequency (UHF-)ECG. METHODS: Thirty-seven patients with a pacemaker indication for bradycardia or cardiac resynchronization therapy underwent LBBAP implantation. ECG, vectorcardiogram, ECG belt and UHF-ECG signals were recorded during RVP, LVSP and LBBP, and intrinsic activation. QRS duration (QRSd) was measured from the ECG, QRS area was calculated from the vectorcardiogram, LV activation time (LVAT) and standard deviation of activation time (SDAT) from ECG belt and electrical dyssynchrony (e-DYS16) from UHF-ECG. RESULTS: Both LVSP and LBBP significantly reduced ventricular electrical heterogeneity as compared to underlying LBBB and RV pacing in terms of QRS area (p < .001), SDAT (p < .001), LVAT (p < .001) and e-DYS16 (p < .001). QRSd was only reduced as compared to RV pacing(p < .001). QRS area was similar during LBBP and normal intrinsic conduction, e-DYS16 was similar during LVSP and normal intrinsic conduction, whereas SDAT was similar for LVSP, LBBP and normal intrinsic conduction. For all these variables there was no significant difference between LVSP and LBBP. CONCLUSION: Both LVSP and LBBP resulted in a more synchronous LV activation than LBBB and RVP. Especially LBBP resulted in levels of LV synchrony comparable to normal intrinsic conduction.
Bakken Research Center Maastricht The Netherlands
Department of Cardiology Cardiovascular Research Institute Maastricht Maastricht The Netherlands
Department of Cardiology Policlinico Casilino of Rome Rome Italy
Department of Cardiology Radboud University Medical Center Nijmegen The Netherlands
Medtronic Fridley Minnesota United States of America
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czechia
Zobrazit více v PubMed
Huang W, Su L, Wu S, et al. A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block. Can J Cardiol. 2017;33:1736 e1‐ e3. PubMed
Mafi‐Rad M, Luermans JGLM, Blaauw Y, et al. Feasibility and acute hemodynamic effect of left ventricular septal pacing by transvenous approach through the interventricular septum. Circulation: Arrhythmia and Electrophysiology. 2016;9:e003344. PubMed
Salden FCWM, Luermans JGLM, Westra SW, et al. Short‐Term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol. 2020;75:347‐359. PubMed
Keene D, Anselme F, Burri H, et al. Conduction system pacing, a european survey: insights from clinical practice. Europace. 2023;25(5):euad019. PubMed PMC
Kircanski B, Boveda S, Prinzen F, et al. Conduction system pacing in everyday clinical practice: EHRA physician survey. EP Europace. 2023;25:682‐687. PubMed PMC
Rijks J, Luermans J, Heckman L, et al. Physiology of left ventricular septal pacing and left bundle branch pacing. Cardiac Electrophysiology Clinics. 2022;14:181‐189. PubMed
Jastrzębski M, Kiełbasa G, Cano O, et al. Left bundle branch area pacing outcomes: the multicentre european MELOS study. Eur Heart J. 2022;43:4161‐4173. PubMed PMC
Curila K, Jurak P, Jastrzebski M, et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18:1281‐1289. PubMed
Heckman LIB, Luermans JGLM, Curila K, et al. Comparing ventricular synchrony in left bundle branch and left ventricular septal pacing in pacemaker patients. J Clin Med. 2021;10:822. PubMed PMC
Hou X, Qian Z, Wang Y, et al. Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum. EP Europace. 2019;21:1694‐1702. PubMed
Burri H, Jastrzebski M, Cano Ó, et al. EHRA clinical consensus statement on conduction system pacing implantation: executive summary. endorsed by the Asia‐Pacific heart rhythm society (APHRS), Canadian heart rhythm society (CHRS) and Latin‐American heart rhythm society (LAHRS). EP Europace. 2023;25:1237‐1248. PubMed PMC
Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42:3427‐3520. PubMed
Wu H, Jiang L, Shen J, Zhang L, Zhong J, Zhuo S. Electrophysiological characteristics and possible mechanism of bipolar pacing in left bundle branch pacing. Heart Rhythm. 2022;19:2019‐2026. PubMed
Jastrzębski M, Burri H, Kiełbasa G, et al. The V6‐V1 interpeak interval: a novel criterion for the diagnosis of left bundle branch capture. EP Europace. 2022;24:40‐47. PubMed PMC
Engels EB, Alshehri S, van Deursen CJM, et al. The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J Electrocardiol. 2015;48:586‐592. PubMed
Engels EB, VÉGH EM, Van Deursen CJM, Vernooy K, Singh JP, Prinzen FW. T‐Wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol. 2015;26:176‐183. PubMed
Kors JA, van Herpen G, Sittig AC, van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J. 1990;11:1083‐1092. PubMed
Mafi Rad M, Wijntjens GWM, Engels EB, et al. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm. 2016;13:217‐225. PubMed
van Deursen CJM, Vernooy K, Dudink E, et al. Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol. 2015;48:45‐52. PubMed
van Stipdonk AMW, Ter Horst I, Kloosterman M, et al. QRS area is a strong determinant of outcome in cardiac resynchronization therapy. Circ Arrhythmia Electrophysiol. 2018;11:e006497. PubMed
Johnson WB, Vatterott PJ, Peterson MA, et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: relationship with acute hemodynamic improvement. Heart Rhythm. 2017;14:385‐391. PubMed
Jurak P, Curila K, Leinveber P, et al. Novel ultra‐high‐frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J Cardiovasc Electrophysiol. 2020;31:300‐307. PubMed
Curila K, Jurak P, Prinzen F, et al. Bipolar anodal septal pacing with direct LBB capture preserves physiological ventricular activation better than unipolar left bundle branch pacing. Front Cardiovasc Med. 2023;10:1140988. PubMed PMC
Sussenbek O, Rademakers L, Waldauf P, et al. Left bundle branch area pacing results in more physiological ventricular activation than biventricular pacing in patients with left bundle branch block heart failure. Eur Heart J Suppl. 2023;25:E17‐E24. PubMed PMC
Gold MR, Thébault C, Linde C, et al. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the resynchronization reverses remodeling in systolic left ventricular dysfunction (REVERSE) study. Circulation. 2012;126:822‐829. PubMed
Zareba W, Klein H, Cygankiewicz I, et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial‐Cardiac Resynchronization Therapy (MADIT‐CRT). Circulation. 2011;123:1061‐1072. PubMed
Gage RM, Curtin AE, Burns KV, Ghosh S, Gillberg JM, Bank AJ. Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in patients with cardiac resynchronization therapy. Heart Rhythm. 2017;14:392‐399. PubMed
Vijayaraman P, Hughes G, Manganiello M, Johns A, Ghosh S. Non‐invasive assessment of ventricular electrical heterogeneity to optimize left bundle branch area pacing. J Interv Card Electrophysiol. 2023;66(5):1103‐1112. PubMed
Ghossein MA, van Stipdonk AMW, Plesinger F, et al. Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. J Cardiovasc Electrophysiol. 2021;32:813‐822. PubMed PMC
Rijks J, Luermans J, Vernooy K. Left bundle branch‐optimized cardiac resynchronization therapy: pursuing the optimal resynchronization in severe (distal) conduction system disease. HeartRhythm Case Rep. 2023;9:355‐357. PubMed PMC
Meiburg R, Rijks JHJ, Beela AS, et al. Comparison of novel ventricular pacing strategies using an electro‐mechanical simulation platform. Europace. 2023;25(6):euad144. PubMed PMC