Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19650831
PubMed Central
PMC3837606
DOI
10.1111/j.1582-4934.2009.00862.x
PII: JCMM862
Knihovny.cz E-zdroje
- MeSH
- bakteriální toxiny metabolismus farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- cyklin-dependentní kinasy antagonisté a inhibitory metabolismus MeSH
- cytokiny metabolismus MeSH
- fenotyp MeSH
- Haemophilus ducreyi metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie * účinky léků fyziologie MeSH
- poškození DNA * MeSH
- signální transdukce fyziologie MeSH
- stárnutí buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální toxiny MeSH
- cyklin-dependentní kinasy MeSH
- cytokiny MeSH
- cytolethal distending toxin MeSH Prohlížeč
Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/gammaH2AX(+) foci), enhanced senescence-associated beta-galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL-6, IL-8 and IL-24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the 'distended' morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.
Zobrazit více v PubMed
Cope LD, Lumbley S, Latimer JL, et al. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci USA. 1997;94:4056–61. PubMed PMC
Johnson WM, Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog. 1988;4:103–13. PubMed
Okuda J, Fukumoto M, Takeda Y, et al. Examination of diarrheagenicity of cytolethal distending toxin: suckling mouse response to the products of the cdtABC genes of Shigella dysenteriae. Infect Immun. 1997;65:428–33. PubMed PMC
Pickett CL, Pesci EC, Cottle DL, et al. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp cdtB gene. Infect Immun. 1996;64:2070–8. PubMed PMC
Scott DA, Kaper JB. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun. 1994;62:244–51. PubMed PMC
Young VB, Knox KA, Schauer DB. Cytolethal distending toxin sequence and activity in the enterohepatic pathogen Helicobacter hepaticus. Infect Immun. 2000;68:184–91. PubMed PMC
Sugai M, Kawamoto T, Peres SY, et al. The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun. 1998;66:5008–19. PubMed PMC
Lara-Tejero M, Galan JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science. 2000;290:354–7. PubMed
Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol. 2000;37:952–63. PubMed
Li LQ, Sharipo A, Chaves-Olarte E, et al. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cellular Microbiology. 2002;4:87–99. PubMed
Comayras C, Tasca C, Peres SY, et al. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun. 1997;65:5088–95. PubMed PMC
Sert V, Cans C, Tasca C, et al. The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks. Oncogene. 1999;18:6296–304. PubMed
Cortes-Bratti X, Karlsson C, Lagergard T, et al. The haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways. J Biol Chem. 2001;276:5296–302. PubMed
Shenker BJ, McKay T, Datar S, et al. Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. J Immunol. 1999;162:4773–80. PubMed
Hassane DC, Lee RB, Pickett CL. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect Immun. 2003;71:541–5. PubMed PMC
Cortes-Bratti X, Frisan T, Thelestam M. The cytolethal distending toxins induce DNA damage and cell cycle arrest. Toxicon. 2001;39:1729–36. PubMed
Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70. PubMed
Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13. PubMed
Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5. PubMed
Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42. PubMed
Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7. PubMed
Campisi J, D’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40. PubMed
Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18. PubMed
Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31. PubMed
Bartek J, Hodny Z, Lukas J. Cytokine loops driving senescence. Nat Cell Biol. 2008;10:887–9. PubMed
Danesh J. Estimating the contribution of Helicobacter pylori to gastric cancer. Br J Cancer. 2000;83:970. PubMed PMC
Giesecke J. International association between Helicobacter pylori and gastric cancer. Lancet. 1993;342:120–1. PubMed
Frisan T, Cortes-Bratti X, Chaves-Olarte E, et al. The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. Cell Microbiol. 2003;5:695–707. PubMed
Guerra L, Teter K, Lilley BN, et al. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cellular Microbiology. 2005;7:921–34. PubMed
Purven M, Lagergard T. Haemophilus ducreyi, a cytotoxin-producing bacterium. Infect Immun. 1992;60:1156–62. PubMed PMC
Mailand N, Falck J, Lukas C, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000;288:1425–9. PubMed
Thullberg M, Welcker M, Bartkova J, et al. Monoclonal antibody probes for p21WAF1/CIP1 and the INK4 family of cyclin-dependent kinase inhibitors. Hybridoma. 2000;19:63–72. PubMed
Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7. PubMed PMC
Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602. PubMed
Alby F, Mazars R, De Rycke J, et al. Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint. Involvement of the CHK2 kinase. FEBS Lett. 2001;491:261–5. PubMed
DiTullio RA, Jr, Mochan TA, Venere M, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol. 2002;4:998–1002. PubMed
De Rycke J, Sert V, Comayras C, et al. Sequence of lethal events in HeLa cells exposed to the G2 blocking cytolethal distending toxin. Eur J Cell Biol. 2000;79:192–201. PubMed
Gary RK, Kindell SM. Quantitative assay of senescence-associated [beta]-galactosidase activity in mammalian cell extracts. Analytical Biochemistry. 2005;343:329–34. PubMed
Pearson M, Carbone R, Sebastiani C, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406:207–10. PubMed
Ferbeyre G, De Stanchina E, Querido E, et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000;14:2015–27. PubMed PMC
Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21:2383–96. PubMed PMC
Janderova-Rossmeislova L, Novakova Z, Vlasakova J, et al. PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. J Struct Biol. 2007;159:56–70. PubMed
Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009;9:81–94. PubMed
Minamino T, Yoshida T, Tateno K, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation. 2003;108:2264–9. PubMed
Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68. PubMed PMC
Hickey TE, McVeigh AL, Scott DA, et al. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun. 2000;68:6535–41. PubMed PMC
Zheng J, Meng J, Zhao S, et al. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun. 2008;76:4498–508. PubMed PMC
Jiang H, Su Z-Z, Lin JJ, et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA. 1996;93:9160–5. PubMed PMC
Xie Y, Sheng W, Xiang J, et al. Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 2008;23:310–20. PubMed
Dent P, Yacoub A, Grant S, et al. MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity: a new cancer therapy? J Cell Biochem. 2005;95:712–9. PubMed
Inoue S, Shanker M, Miyahara R, et al. MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther. 2006;6:73–91. PubMed
Carson CT, Orazio NI, Lee DV, et al. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J. 2009;28:652–62. PubMed PMC
Ge Z, Rogers AB, Feng Y, et al. Bacterial cytolethal distending toxin promotes the development of dysplasia in a model of microbially induced hepatocarcinogenesis. Cell Microbiol. 2007;9:2070–80. PubMed
Lax AJ. Opinion: Bacterial toxins and cancer–a case to answer? Nat Rev Microbiol. 2005;3:343–9. PubMed
Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis