• This record comes from PubMed

Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells

. 2012 Aug 03 ; 287 (32) : 26702-14. [epub] 20120618

Language English Country United States Media print-electronic

Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 22711534
PubMed Central PMC3411009
DOI 10.1074/jbc.m111.316869
PII: S0021-9258(20)47865-2
Knihovny.cz E-resources

Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(-595/-628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.

See more in PubMed

Dellaire G., Bazett-Jones D. P. (2007) Beyond repair foci. Subnuclear domains and the cellular response to DNA damage. Cell Cycle 6, 1864–1872 PubMed

Ruggero D., Wang Z. G., Pandolfi P. P. (2000) The puzzling multiple lives of PML and its role in the genesis of cancer. Bioessays 22, 827–835 PubMed

Bernardi R., Pandolfi P. P. (2007) Structure, dynamics, and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8, 1006–1016 PubMed

de Thé H., Chomienne C., Lanotte M., Degos L., Dejean A. (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558–561 PubMed

Wang Z. G., Delva L., Gaboli M., Rivi R., Giorgio M., Cordon-Cardo C., Grosveld F., Pandolfi P. P. (1998) Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 PubMed

Gurrieri C., Capodieci P., Bernardi R., Scaglioni P. P., Nafa K., Rush L. J., Verbel D. A., Cordon-Cardo C., Pandolfi P. P. (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins J. Natl. Cancer Inst. 96, 269–279 PubMed

Gambacorta M., Flenghi L., Fagioli M., Pileri S., Leoncini L., Bigerna B., Pacini R., Tanci L. N., Pasqualucci L., Ascani S., Mencarelli A., Liso A., Pelicci P. G., Falini B. (1996) Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am. J. Pathol. 149, 2023–2035 PubMed PMC

Koken M. H., Linares-Cruz G., Quignon F., Viron A., Chelbi-Alix M. K., Sobczak-Thépot J., Juhlin L., Degos L., Calvo F., de Thé H. (1995) The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10, 1315–1324 PubMed

Lavau C., Marchio A., Fagioli M., Jansen J., Falini B., Lebon P., Grosveld F., Pandolfi P. P., Pelicci P. G., Dejean A. (1995) The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11, 871–876 PubMed

Korioth F., Gieffers C., Maul G. G., Frey J. (1995) Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J. Cell Biol. 130, 1–13 PubMed PMC

Der S. D., Zhou A., Williams B. R., Silverman R. H. (1998) Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A. 95, 15623–15628 PubMed PMC

Chelbi-Alix M. K., Pelicano L., Quignon F., Koken M. H., Venturini L., Stadler M., Pavlovic J., Degos L., de Thé H. (1995) Induction of the PML protein by interferons in normal and APL cells. Leukemia 9, 2027–2033 PubMed

Bourdeau V., Baudry D., Ferbeyre G. (2009) PML links aberrant cytokine signaling and oncogenic stress to cellular senescence Front. Biosci. 14, 475–485 PubMed

Krieghoff-Henning E., Hofmann T. G. (2008) Role of nuclear bodies in apoptosis signaling. Biochim. Biophys. Acta 1783, 2185–2194 PubMed

Pearson M., Carbone R., Sebastiani C., Cioce M., Fagioli M., Saito S., Higashimoto Y., Appella E., Minucci S., Pandolfi P. P., Pelicci P. G. (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 PubMed

Louria-Hayon I., Grossman T., Sionov R. V., Alsheich O., Pandolfi P. P., Haupt Y. (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J. Biol. Chem. 278, 33134–33141 PubMed

de Stanchina E., Querido E., Narita M., Davuluri R. V., Pandolfi P. P., Ferbeyre G., Lowe S. W. (2004) PML is a direct p53 target that modulates p53 effector functions. Mol. Cell 13, 523–535 PubMed

Narita M., Nũnez S., Heard E., Narita M., Lin A. W., Hearn S. A., Spector D. L., Hannon G. J., Lowe S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 PubMed

Zhang R., Poustovoitov M. V., Ye X., Santos H. A., Chen W., Daganzo S. M., Erzberger J. P., Serebriiskii I. G., Canutescu A. A., Dunbrack R. L., Pehrson J. R., Berger J. M., Kaufman P. D., Adams P. D. (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30 PubMed

Zhang R., Chen W., Adams P. D. (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol. Cell. Biol. 27, 2343–2358 PubMed PMC

Ye X., Zerlanko B., Zhang R., Somaiah N., Lipinski M., Salomoni P., Adams P. D. (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol. Cell. Biol. 27, 2452–2465 PubMed PMC

Kosar M., Bartkova J., Hubackova S., Hodny Z., Lukas J., Bartek J. (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10, 457–468 PubMed

Janderová-Rossmeislová L., Nováková Z., Vlasáková J., Philimonenko V., Hozák P., Hodný Z. (2007) PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. J. Struct. Biol. 159, 56–70 PubMed

Jiang W. Q., Ringertz N. (1997) Altered distribution of the promyelocytic leukemia-associated protein is associated with cellular senescence. Cell Growth Differ. 8, 513–522 PubMed

Ferbeyre G., de Stanchina E., Querido E., Baptiste N., Prives C., Lowe S. W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 PubMed PMC

Blazkova H., Krejcikova K., Moudry P., Frisan T., Hodny Z., Bartek J. (2010) Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signaling. J. Cell. Mol. Med. 14, 357–367 PubMed PMC

Stadler M., Chelbi-Alix M. K., Koken M. H., Venturini L., Lee C., Saïb A., Quignon F., Pelicano L., Guillemin M. C., Schindler C., (1995) Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565–2573 PubMed

Scaglioni P. P., Yung T. M., Cai L. F., Erdjument-Bromage H., Kaufman A. J., Singh B., Teruya-Feldstein J., Tempst P., Pandolfi P. P. (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 PubMed

Coppé J. P., Desprez P. Y., Krtolica A., Campisi J. (2010) The senescence-associated secretory phenotype. The dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 PubMed PMC

Kuilman T., Peeper D. S. (2009) Senescence-messaging secretome, SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 PubMed

Young A. R., Narita M. (2009) SASP reflects senescence. EMBO Rep. 10, 228–230 PubMed PMC

Novakova Z., Hubackova S., Kosar M., Janderova-Rossmeislova L., Dobrovolna J., Vasicova P., Vancurova M., Horejsi Z., Hozak P., Bartek J., Hodny Z. (2010) Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29, 273–284 PubMed

Hubackova S., Novakova Z., Krejcikova K., Kosar M., Dobrovolna J., Duskova P., Hanzlikova H., Vancurova M., Barath P., Bartek J., Hodny Z. (2010) Regulation of the PML tumor suppressor in drug-induced senescence of human normal and cancer cells by JAK/STAT-mediated signaling. Cell Cycle 9, 3085–3099 PubMed

Carbone R., Pearson M., Minucci S., Pelicci P. G. (2002) PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21, 1633–1640 PubMed

Dellaire G., Kepkay R., Bazett-Jones D. P. (2009) High resolution imaging of changes in the structure and spatial organization of chromatin, γ-H2A.X, and the MRN complex within etoposide-induced DNA repair foci. Cell Cycle 8, 3750–3769 PubMed

Dellaire G., Bazett-Jones D. P. (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963–977 PubMed

Bartkova J., Horejsí Z., Koed K., Krämer A., Tort F., Zieger K., Guldberg P., Sehested M., Nesland J. M., Lukas C., Ørntoft T., Lukas J., Bartek J. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 PubMed

Bartkova J., Rezaei N., Liontos M., Karakaidos P., Kletsas D., Issaeva N., Vassiliou L. V., Kolettas E., Niforou K., Zoumpourlis V. C., Takaoka M., Nakagawa H., Tort F., Fugger K., Johansson F., Sehested M., Andersen C. L., Dyrskjot L., Ørntoft T., Lukas J., Kittas C., Helleday T., Halazonetis T. D., Bartek J., Gorgoulis V. G. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 PubMed

Di Micco R., Fumagalli M., Cicalese A., Piccinin S., Gasparini P., Luise C., Schurra C., Garre' M., Nuciforo P. G., Bensimon A., Maestro R., Pelicci P. G., d'Adda di Fagagna F. (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 PubMed

Gorgoulis V. G., Vassiliou L. V., Karakaidos P., Zacharatos P., Kotsinas A., Liloglou T., Venere M., Ditullio R. A., Jr., Kastrinakis N. G., Levy B., Kletsas D., Yoneta A., Herlyn M., Kittas C., Halazonetis T. D. (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 PubMed

Bartek J., Lukas J., Bartkova J. (2007) DNA damage response as an anti-cancer barrier. Damage threshold and the concept of “conditional haploinsufficiency.” Cell Cycle 6, 2344–2347 PubMed

Stuurman N., de Graaf A., Floore A., Josso A., Humbel B., de Jong L., van Driel R. (1992) A monoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J. Cell Sci. 101, 773–784 PubMed

Koken M. H., Puvion-Dutilleul F., Guillemin M. C., Viron A., Linares-Cruz G., Stuurman N., de Jong L., Szostecki C., Calvo F., Chomienne C. (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 13, 1073–1083 PubMed PMC

Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 PubMed

Heinrich P. C., Behrmann I., Haan S., Hermanns H. M., Müller-Newen G., Schaper F. (2003) Principles of interleukin (IL)-6-type cytokine signaling and its regulation. Biochem. J. 374, 1–20 PubMed PMC

Aarden L. A. (1989) Hybridoma growth factor. Ann. N.Y. Acad. Sci. 557, 192–198, discussion 198–199 PubMed

Vlasáková J., Nováková Z., Rossmeislová L., Kahle M., Hozák P., Hodny Z. (2007) Histone deacetylase inhibitors suppress IFNα-induced up-regulation of promyelocytic leukemia protein. Blood 109, 1373–1380 PubMed

Carey M., Peterson C. L., Smale S. T. (2008) Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques, 2 Ed., pp. 132–139, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Rogakou E. P., Pilch D. R., Orr A. H., Ivanova V. S., Bonner W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 PubMed

Eda H., Burnette B. L., Shimada H., Hope H. R., Monahan J. B. (2011) Interleukin-1β-induced interleukin-6 production in A549 cells is mediated by both phosphatidylinositol 3-kinase and interleukin-1receptor-associated kinase-4. Cell Biol. Int. 35, 355–358 PubMed

Walter M., Liang S., Ghosh S., Hornsby P. J., Li R. (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28, 2745–2755 PubMed PMC

Ehret G. B., Reichenbach P., Schindler U., Horvath C. M., Fritz S., Nabholz M., Bucher P. (2001) DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J. Biol. Chem. 276, 6675–6688 PubMed

Takahashi-Tezuka M., Hibi M., Fujitani Y., Fukada T., Yamaguchi T., Hirano T. (1997) Tec tyrosine kinase links the cytokine receptors to PI 3-kinase probably through JAK. Oncogene 14, 2273–2282 PubMed

Matsusaka T., Fujikawa K., Nishio Y., Mukaida N., Matsushima K., Kishimoto T., Akira S. (1993) Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6, and interleukin 8. Proc. Natl. Acad. Sci. U.S.A. 90, 10193–10197 PubMed PMC

Tegethoff S., Behlke J., Scheidereit C. (2003) Tetrameric oligomerization of IκB kinase γ (IKKγ) is obligatory for IKK complex activity and NF-κB activation. Mol. Cell. Biol. 23, 2029–2041 PubMed PMC

Biron C. A. (1998) Role of early cytokines, including α, and β interferons (IFN-α/β) in innate and adaptive immune responses to viral infections. Semin. Immunol. 10, 383–390 PubMed

Mallette F. A., Gaumont-Leclerc M. F., Huot G., Ferbeyre G. (2007) Myc down-regulation as a mechanism to activate the Rb pathway in STAT5A-induced senescence. J. Biol. Chem. 282, 34938–34944 PubMed

Shtutman M., Zhurinsky J., Oren M., Levina E., Ben-Ze'ev A. (2002) PML is a target gene of β-catenin and plakoglobin and coactivates β-catenin-mediated transcription. Cancer Res. 62, 5947–5954 PubMed

Everett R. D. (2006) Interactions between DNA viruses, ND10 and the DNA damage response. Cell. Microbiol. 8, 365–374 PubMed

Chelbi-Alix M. K., Quignon F., Pelicano L., Koken M. H., de Thé H. (1998) Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J. Virol. 72, 1043–1051 PubMed PMC

Regad T., Chelbi-Alix M. K. (2001) Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20, 7274–7286 PubMed

Maul G. G., Guldner H. H., Spivack J. G. (1993) Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0) J. Gen. Virol. 74, 2679–2690 PubMed

Everett R. D., Maul G. G. (1994) HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J. 13, 5062–5069 PubMed PMC

Wilkinson G. W., Kelly C., Sinclair J. H., Rickards C. (1998) Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J. Gen. Virol. 79, 1233–1245 PubMed

Sternsdorf T., Grötzinger T., Jensen K., Will H. (1997) Nuclear dots. Actors on many stages. Immunobiology 198, 307–331 PubMed

Müller S., Dejean A. (1999) Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol. 73, 5137–5143 PubMed PMC

Puvion-Dutilleul F., Venturini L., Guillemin M. C., de Thé H., Puvion E. (1995) Sequestration of PML and Sp100 proteins in an intranuclear viral structure during herpes simplex virus type 1 infection. Exp. Cell Res. 221, 448–461 PubMed

Burkham J., Coen D. M., Weller S. K. (1998) ND10 protein PML is recruited to herpes simplex virus type 1 prereplicative sites and replication compartments in the presence of viral DNA polymerase. J. Virol. 72, 10100–10107 PubMed PMC

Burkham J., Coen D. M., Hwang C. B., Weller S. K. (2001) Interactions of herpes simplex virus type 1 with ND10 and recruitment of PML to replication compartments. J. Virol. 75, 2353–2367 PubMed PMC

Everett R. D., Murray J. (2005) ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J. Virol. 79, 5078–5089 PubMed PMC

Everett R. D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. (2006) PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J. Virol. 80, 7995–8005 PubMed PMC

Chelbi-Alix M. K., de Thé H. (1999) Herpes virus induced proteasome-dependent degradation of the nuclear body-associated PML and Sp100 proteins. Oncogene 18, 935–941 PubMed

Herzer K., Weyer S., Krammer P. H., Galle P. R., Hofmann T. G. (2005) Hepatitis C virus core protein inhibits tumor suppressor protein promyelocytic leukemia function in human hepatoma cells. Cancer Res. 65, 10830–10837 PubMed

Lombard D. B., Guarente L. (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 60, 2331–2334 PubMed

Mirzoeva O. K., Petrini J. H. (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell. Biol. 21, 281–288 PubMed PMC

Kuilman T., Michaloglou C., Vredeveld L. C., Douma S., van Doorn R., Desmet C. J., Aarden L. A., Mooi W. J., Peeper D. S. (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 PubMed

Acosta J. C., O'Loghlen A., Banito A., Guijarro M. V., Augert A., Raguz S., Fumagalli M., Da Costa M., Brown C., Popov N., Takatsu Y., Melamed J., d'Adda di Fagagna F., Bernard D., Hernando E., Gil J. (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 PubMed

Rodier F., Coppé J. P., Patil C. K., Hoeijmakers W. A., Muñoz D. P., Raza S. R., Freund A., Campeau E., Davalos A. R., Campisi J. (2009) Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 PubMed PMC

Horvath C. M., Wen Z., Darnell J. E., Jr. (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev. 9, 984–994 PubMed

Libermann T. A., Baltimore D. (1990) Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol. Cell. Biol. 10, 2327–2334 PubMed PMC

Rein T., Müller M., Zorbas H. (1994) In vivo footprinting of the IRF-1 promoter. Inducible occupation of a GAS element next to a persistent structural alteration of the DNA. Nucleic Acids Res. 22, 3033–3037 PubMed PMC

Wright K. L., White L. C., Kelly A., Beck S., Trowsdale J., Ting J. P. (1995) Coordinate regulation of the human TAP1 and LMP2 genes from a shared bidirectional promoter. J. Exp. Med. 181, 1459–1471 PubMed PMC

Minamino T., Yoshida T., Tateno K., Miyauchi H., Zou Y., Toko H., Komuro I. (2003) Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 108, 2264–2269 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...