Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27464666
PubMed Central
PMC5099368
DOI
10.1007/s11356-016-7222-z
PII: 10.1007/s11356-016-7222-z
Knihovny.cz E-zdroje
- Klíčová slova
- Boletus badius, Contamination, Edible mushroom, Flotation tailings, Mineral composition, Organic acids, Soil, Underlying substrate,
- MeSH
- Agaricales chemie růst a vývoj MeSH
- fumaráty analýza MeSH
- kyselina jantarová analýza MeSH
- kyselina mléčná analýza MeSH
- látky znečišťující půdu analýza MeSH
- plodnice hub chemie růst a vývoj MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- fumaráty MeSH
- fumaric acid MeSH Prohlížeč
- kyselina jantarová MeSH
- kyselina mléčná MeSH
- látky znečišťující půdu MeSH
- půda MeSH
The aim of the study was to (i) investigate the potential of edible mushroom Boletus badius (Fr.) Fr. to accumulate 53 elements from unpolluted acidic sandy soil and polluted alkaline flotation tailing sites in Poland, (ii) to estimate the low-molecular-weight organic acid (LMWOA) profile and contents in fruit bodies, and finally (iii) to explore the possible relationship between elements and LMWOA content in mushrooms. The content of most elements in fruiting bodies collected from the flotation tailings was significantly higher than in mushrooms from the unpolluted soils. The occurrence of elements determined in fruiting bodies of B. badius has been varied (from 0.01 mg kg-1 for Eu, Lu, and Te up to 18,932 mg kg-1 for K). The results established the high importance of element contents in substrate. Among ten organic acids, nine have been found in wide range: from below 0.01 mg kg-1 for fumaric acid to 14.8 mg g-1 for lactic acid. Lactic and succinic acids were dominant in both areas, and citric acid was also in high content in polluted area. The correlation between element contents and the individual and total content of LMWOAs was confirmed.
Department of Biology and Environmental Protection University of Medical Sciences Poznan Poland
Department of Chemistry Poznan University of Life Sciences Poznań Poland
Department of Vegetable Crops Poznan University of Life Sciences Poznań Poland
Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
Zobrazit více v PubMed
Barros L, Pereira C, Ferreira ICFR. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal Methods. 2013;6:309–316. doi: 10.1007/s12161-012-9443-1. DOI
Blake L, Goulding KWT. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil. 2002;240:235–251. doi: 10.1023/A:1015731530498. DOI
Borovička J, Řanda Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol progress. 6:249–259
Böke N, Sirén H, Petrik LF. Fungal biofermentation of pine bark producing organic acids and their quantification with capillary electrophoresis. Ind Crop Prod. 2015;67:41–48. doi: 10.1016/j.indcrop.2015.01.020. DOI
Campos JA, Tejera NA. Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res. 2011;143:540–554. doi: 10.1007/s12011-010-8853-4. PubMed DOI
Cawthray GR. An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A. 2003;1011:233–240. doi: 10.1016/S0021-9673(03)01129-4. PubMed DOI
Dresler S, Bednarek W, Wójcik M. Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare L. Ecotoxicol Environ Saf. 2014;104:332–338. doi: 10.1016/j.ecoenv.2014.03.019. PubMed DOI
Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Chadzinikolau T, Goliński P. Copper phytoextraction with Salix purpurea × viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiol Plant. 2014;36:903–913. doi: 10.1007/s11738-013-1469-5. DOI
Falandysz J. Selenium in edible mushrooms. J Environ Sci Heal C. 2008;26:256–299. doi: 10.1080/10590500802350086. PubMed DOI
Falandysz J, Bielawski L. Mercury and its bioconcentration factors in Brown birch Scaber stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 2007;105:635–640. doi: 10.1016/j.foodchem.2007.04.024. DOI
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC
Falandysz J, Szymczyk K, Ichihashi H, Bielawksi L, Gucia M, Frankowska A, Yamasaki S-I. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam. 2001;18:503–513. doi: 10.1080/02652030119625. PubMed DOI
Fernandes Â, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR. Feasibility of electron-beam irradiation to preserve wild dried mushrooms: effects on chemical composition and antioxidant activity. Innovative Food Sci Emerg. 2014;22:158–166. doi: 10.1016/j.ifset.2013.12.015. DOI
Gadd GM. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol. 1999;41:47–92. doi: 10.1016/S0065-2911(08)60165-4. PubMed DOI
Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere. 2013;90:1449–1454. doi: 10.1016/j.chemosphere.2012.08.061. PubMed DOI
Goliński P, Mleczek M, Magdziak Z, Gąsecka M, Borowiak K, Dąbrowski J, Kaczmarek Z, Rutkowski P. Efficiency of Zn phytoextraction, biomass yield and formation of low-molecular-weight organic acids in S × rubens—a hydroponic experiment. Chem Ecol. 2015;31:345–364. doi: 10.1080/02757540.2014.993976. DOI
ISO 10390 (2005) Soil quality—determination of pH
ISO 11271 (2002) Soil quality—determination of redox potential
Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI
Karaffa L, Sándor E, Fekete E, Szentirmai A. The biochemistry of citric acid accumulation by Aspergillus niger. Acta Microbiol Immunol Hung. 2001;48:429–440. doi: 10.1556/AMicr.48.2001.3-4.11. PubMed DOI
Kojta AK, Jarzyńska G, Falandysz J. Mineral composition and heavy metal accumulation capacity of bay bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor. 2012;121:76–82. doi: 10.1016/j.gexplo.2012.08.004. DOI
Kutrowska A, Szelag M. Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals. Acta Physiol Plant. 2014;36:1957–1968. doi: 10.1007/s11738-014-1576-y. DOI
Leal AR, Barros L, Barreira JCM, Sousa MJ, Martins A, Santos-Buelga C, Ferreira ICFR. Portuguese wild mushrooms at the “pharma-nutrition” interface: nutritional characterization and antioxidant properties. Food Res Int. 2013;50:1–9. doi: 10.1016/j.foodres.2012.10.012. DOI
López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L. Review organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000;160:1–13. doi: 10.1016/S0168-9452(00)00347-2. PubMed DOI
Magdziak Z, Mleczek M, Kaczmarek Z, Goliński P. Influence of Ca/Mg ratio and Cd2+ and Pb2+ elements on low molecular weight organic acid secretion by Salix viminalis L. Roots into the rhizosphere. Trees Struct Funct. 2013;27:663–673. doi: 10.1007/s00468-012-0821-5. DOI
Malinowska E, Szefer P, Falandysz J. Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem. 2004;84:405–416. doi: 10.1016/S0308-8146(03)00250-4. DOI
Mleczek M, Siwulski M, Mikołajczak P, Gąsecka M, Sobieralski K, Szymańczyk M, Goliński P. Content of selected elements in Boletus badius fruiting bodies growing in extremely polluted wastes. J Environ Sci Healt A. 2015;50:767–775. doi: 10.1080/10934529.2015.1012014. PubMed DOI
Mleczek M, Siwulski M, Mikołajczak P, Goliński P, Gąsecka M, Sobieralski K, Dawidowicz L, Szymańczyk M. Bioaccumulation of elements in three selected mushroom species from Southwest Poland. J Environ Sci Healt B. 2015;50:207–216. doi: 10.1080/03601234.2015.982427. PubMed DOI
Nawirska-Olszańska A, Biesiada A, Sokół-Łętowska A, Kucharska AZ. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem. 2014;148:415–419. doi: 10.1016/j.foodchem.2013.10.080. PubMed DOI
Niedzielski P, Mleczek M, Magdziak Z, Siwulski M, Kozak L. Selected arsenic species: as(III), as(V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chem. 2013;141:3571–3577. doi: 10.1016/j.foodchem.2013.06.103. PubMed DOI
Ousmanova D, Parker W. Fungal generation of organic acids for removal of lead from contaminated soil. Water Air Soil Pollut. 2007;179:365–380. doi: 10.1007/s11270-006-9241-8. DOI
Reczyński W, Muszyńska B, Opoka W, Smalec A, Sułkowska-Ziaja K, Malec M. Comparative study of metals accumulation in cultured in vitro mycelium and naturally grown fruiting bodies of Boletus badius and Cantharellus cibarius. Biol Trace Elem Res. 2013;153:355–362. doi: 10.1007/s12011-013-9670-3. PubMed DOI PMC
Regulation of the Ministry of Economy (2015) No. 110, concerning kinds of wastes maybe stored at landfills of wastes in nonselective way
Ribeiro B, Andrade PB, Baptista P, Barros L, Ferreira ICFR, Seabra RM, Valentão P. Leucopaxillus giganteus mycelium: effect of nitrogen source on organic acids and alkaloids. J Agric Food Chem. 2008;56:4769–4774. doi: 10.1021/jf8001526. PubMed DOI
Ribeiro B, Rangel J, Valentão P, Baptista P, Seabra RM, Andrade PB. Contents of carboxylic acids and two phenolics and anti-oxidant activity of dried Portuguese wild edible mushrooms. J Agric Food Chem. 2006;54:8530–8537. doi: 10.1021/jf061890q. PubMed DOI
Rudawska M, Leski T. Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-Central Poland. Food Chem. 2005;92:499–506. doi: 10.1016/j.foodchem.2004.08.017. DOI
Svoboda L, Chrastný V. Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam Part A. 2008;25:51–58. doi: 10.1080/02652030701458519. PubMed DOI
Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96:580–585. doi: 10.1016/j.foodchem.2005.03.012. DOI
Tyler G, Olsson T. Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur J Soil Sci. 2001;52:151–165. doi: 10.1046/j.1365-2389.2001.t01-1-00360.x. DOI
Zeppa S, Amicucci A, Saltarelli R, Giomaro G, Stocchi V. Edible ectomycorrhizal mushroom molecular response to heavy metals. In: Zambonelli A, Bonito GM, editors. Edible ectomycorrhizal mushrooms, soil biology. Berlin Heidelberg: Springer-Verlag; 2012. pp. 41–46.